Вейвлет-перетворення![]()
В математиці, серії вейвлетів є подання квадратної інтегрованої[en] (дійсні або комплексні значення) функції за певною ортонормованої серії, породженої вейвлетом. В даний час, вейвлет-перетворення є одним з найпопулярніших тимчасових частот-перетворювань. У даній статті наводиться формальне та математичне визначення ортонормованого вейвлета, та інтегрального вейвлет-перетворення. ВизначенняФункція називається ортонормованим вейвлетом, якщо її можна використати для визначення базису Гільберта, тобто повна ортонормована система, для Гільбертого простору квадратично-інтегрованих функцій[en]. Базис Гільберта будується як сімейство функцій за допомогою двійкових перенесень і розтягувань[en] ,
де , є дельта Кронекера. Повнота виконується, якщо кожна функція може бути розширена в базисі як із збіжності рядів розуміється збіжність по нормі. Таке уявлення функції f відомо як серія вейвлета. Це означає, що ортонормований вейвлет самоподвійний[en]. Інтегральне вейвлет-перетворення є інтегральним перетворенням і визначається як : . Коефіцієнти вейвлетів отримуються з формули: Тут, називається бінарним розширенням або двійковим розширенням, і це бінарна або двійкова позиція. ПринципОсновна ідея вейвлет-перетворень є те, що перетворення має дозволити тільки зміни в продовження часу, але не форму. Це залежить від вибору відповідних базисних функцій, які дозволяють це. Зміни в продовження часу, як очікується, відповідають відповідній частоті аналізу функції базису. Виходячи з принципу невизначеності обробки сигналів:, де t представляє час і ω кутову частоту; (ω = 2πf, де f є тимчасова частота). Чим вище необхідний дозвіл в часі, тим нижче має бути дозвіл по частоті. Чим більше вибрано розширення вікна аналізу, тим більше величина . ![]() Коли Δt велике,
Коли Δt мала
Іншими словами, базову функцію Ψ можна розглядати як імпульсний відгук системи, з якою функція х(t) була відфільтрована. Перетворений сигнал містить інформацію про час і частоту. Таким чином, вейвлет-перетворення містить інформацію, аналогічну до віконного Фур'є-перетворення, але з додатковими спеціальними властивостями вейвлетів, які з'являються в вирішенні під час більш високих частотах аналізу базисної функції. Різниця в дозволі часу на висхідних частотах для перетворення Фур'є і вейвлет-перетворення показано нижче.
Можна побачити, що вейвлет-перетворення кращий в дозволі часу високих частот, в той час як для повільно мінливих функцій, важливий дозвіл по частоті. Інший приклад: Аналіз трьох накладених один на одного синусоїдальних сигналів , з STFT і вейвлет-перетворенням. Вейвлет стисненняВейвлет стиснення є формою стиснення даних, яка добре підходить для стиснення зображень (іноді також стиснення відео і аудіо стиснення). Помітні реалізацій JPEG 2000, DjVu і нерухомих зображень, CineForm[en] і BBC's Dirac[en]. Мета полягає в тому, щоб зберігати дані зображення, зайнявши, при цьому як менше місця, наскільки це можливо в файлі. Вейвлет стиснення може бути або без втрат, або з втратами.[1] За допомогою вейвлет-перетворення, методи вейвлет стиснення є достатніми для подання перехідних процесів, таких як ударні звуки в аудіо, або високочастотні компоненти в двовимірних зображень, наприклад, зображення зірок на нічному небі. Це означає, що перехідні елементи даних сигналу можуть бути представлені меншою кількістю інформації, ніж було б у разі використання якої-небудь іншої трансформації, наприклад широкого дискретного косинусного перетворення. Дискретне вейвлет-перетворення було успішно застосовано для стиснення електрокардіографічних (ЕКГ) сигналів.[2] У даній роботі, висока кореляція між відповідними вейвлет-коефіцієнтами сигналів послідовних серцевих циклів і використовуються лінійне передбачення з використанням. Вейвлет стиснення не підходить для всіх видів даних: перехідні характеристики сигналу означають гарне стиснення вейвлета, в той час як гладкі, періодичні сигнали краще стискаються за допомогою інших методів, зокрема, традиційна гармоніка стиснення (частотна область, за допомогою перетворень Фур'є і пов'язаними з ними). Дивись Щоденник x264 Розробник: Проблеми з вейвлетами (2010) (Diary Of An x264 Developer: The problems with wavelets) для обговорення практичних питань існуючих методів з використанням вейвлетів для стиснення відео. МетодПерше вейвлет-перетворення було прикладним. Він виробляє стільки коефіцієнтів, скільки пікселів у зображенні (тобто, немає ніякого стиснення, оскільки це тільки перетворення). Ці коефіцієнти можна легше стиснути, тому що загальна матриця містить надлишкову інформацію, а значення їх — статистично залежні. Цей принцип називається кодування з перетворенням[en]. Після цього коефіцієнти квантуються і квантовані значення ентропійно кодуються і / або кодується довжина послідовності. Декілька 1D і 2D застосувань вейвлет-стиснення використовують технологію, яка називається «вейвлетний слід» (англ. wavelet footprints).[3][4] Порівняння з перетворенням Фур'є та частотно-часового аналізу
Вейвлети мають деякі незначні переваги в порівнянні з Фур'є, наприклад, в скороченні обчислень при розгляді конкретних частот. Проте, вони рідко бувають більш чутливими, і, дійсно, спільний вейвлет Морлета[en] — це математично ідентичний до віконного перетворення Фур'є з використанням функції вікна Гаусса.[5] Виняток є при пошуку сигналів відомої синусоїдальної форми (наприклад, серцебиття); в цьому випадку, використовуючи відповідний вейвлет можна перевершити стандартний аналіз STFT / Морлет.[6] Інші практичні використанняВейвлет-перетворення може дати нам з частотою сигналів час, пов'язаним з цими частотами, робить його дуже зручним для його застосування в різних областях. Так, наприклад, обробка сигналів прискорень для аналізу ходи,[7] для виявлення несправностей,[8] для дизайну електрокардіостимуляторів низької потужності, а також в надширокосмугових (Сніп) бездротового зв'язку.[9] 1.Дискретизація c-τ осі Застосовують наступну дискретизацію частоти і часу: Призводить до форми вейвлетів, яка є дискретна формулою для базису вейвлета: Такі дискретні вейвлети можуть бути використані для трансформації: 2.Реалізація через БПФ (швидке перетворення Фур'є) Видно з подання вейвлет-перетворення (як показано нижче) : де с — коефіцієнт масштабування, τ являє собою фактор зсуву часу і, як вже згадувалися в цьому контексті, вейвлет-перетворення відповідає згортку функції у(t) і вейвлет-функцію]. Згортка може бути реалізована як множення в частотній області. При цьому наступний підхід результатів реалізації в:
№Зворотне перетворення продукту в результати тимчасової області в YW для різних дискретних значень τ і дискретне значення . №Повертаємося до другого кроку, до тих пір, поки всі значення дискретного масштабування для обробляються. Є багато різних типів вейвлет-перетворення для конкретних цілей. Див. також: повний список вейвлета пов'язаних перетворень, але загальні з них перераховані нижче: мексиканський капелюх[en], вейвлет Хаара, Вейвлет, вейвлет Добеші, трикутний імпульс. Див. також
Література
Примітки
|
Portal di Ensiklopedia Dunia