Граф Петерсена
Граф Петерсена — неорієнтований граф з 10 вершинами і 15 ребрами. Це невеличкий граф, який слугує корисним прикладом або контрприкладом для багатьох проблем в теорії графів. Названий на честь Юліуса Петерсена, який у 1898 побудував його як найменший безмостовий кубічний граф з неможливістю триколірного розфарбування ребер.[1] Хоча граф звичайно приписують Петерсену, він з'явився на 12 років раніше, в 1886.[2] Дональд Кнут стверджує, що граф Петерсена це «видатна форма, що слугує контрприкладом для багатьох оптимістичних пророцтв про те, що може бути правильним для графів загалом.»[3] Побудова![]() Граф Петерсена — це доповнення реберного графа для . Це також граф Кнесера ; це значить, що він має по одній вершині для кожного 2-елементної підмножини 5-елементної множини, і дві вершини зв'язані ребром тоді і тільки тоді, якщо відповідні двохелементні підмножини не перетинаються між собою. Як граф Кнесера форми — це приклад непарного графа. Геометрично, граф Петерсена є графом, утвореним вершинами і ребрами напівдодекаедра, тобто додекаедра з ототожненими протилежними вершинами, ребрами і гранями. Вкладення![]() Граф Петерсена — непланарний. Будь-який непланарний граф включає в собі як мінор повний граф , або повний двочастковий граф , але граф Петерсена має як мінори їх обох. Мінор можна отримати видаленням ребер досконалого парування, наприклад, п'яти коротких ребер на малюнку. ![]() Найпоширеніший малюнок графа Петерсена, пентаграма всередині пентагона, має п'ять перетинів. Однак, це найкращий малюнок з огляду на кількість перетинів; існує інше зображення лише з двома перетинами. На торі граф Петерсена можна намалювати без перетинів; отже його зорієнтований рід 1. Див. такожПримітки
|
Portal di Ensiklopedia Dunia