Дробовий ідеалДробовий ідеал — підмножина Q поля часток K області цілісності R, що має вигляд , де — ідеал кільця R. У інших термінах Q є R-підмодулем поля K, всі елементи якого допускають спільний знаменник, тобто існує елемент такий, що для всіх Для двох дробових ідеалів Q і P визначається операція множення: QP — множина всіх скінченних сум Дробові ідеали утворюють щодо множення напівгрупу з одиницею R. Для дробового ідеалу Q визначається дробовий ідеал Очевидно Якщо при цьому виконується рівність, то дробовий ідеал Q є оборотним елементом напівгрупи і дробовий ідеал є його оберненим елементом. Для дедекіндових кілець і лише для них напівгрупа є групою, тобто кожен дробовий ідеал кільця Дедекінда має обернений дробовий ідеал. Дана група є вільною абелевою групою, твірними якої є прості ідеали кільця Дедекінда. Оборотні елементи напівгрупи називаються оборотними ідеалами. Кожен оборотний ідеал має скінченний базис над R. Також кожен скінченно породжений R-модуль є дробовим ідеалом. Головним дробовим ідеалом називається дробовий ідеал породжений одним елементом як R-підмодуль поля K. Тобто головний дробовий ідеал, це множина виду Всі головні дробові ідеали є оборотними: оберненим ідеалом є ідеал Два головних ідеали і рівні тоді і тільки тоді, коли де e — оборотний елемент кільця R. Дивізоріальні ідеалиНехай — перетин всіх головних дробових ідеалів, що містять дробовий ідеал I. Еквівалентно, де
Якщо тоді ідеал I називається дивізоріальним. Література
Посилання
|
Portal di Ensiklopedia Dunia