Ця стаття є сирим перекладом з іншої мови. Можливо, вона створена за допомогою машинного перекладу або перекладачем, який недостатньо володіє обома мовами. Будь ласка, допоможіть поліпшити переклад.(червень 2017)
В теорії графівкоефіцієнт кластеризації є мірою ступеня, в якій вузли в графі мають тенденцію групуватися разом. Наявні дані свідчать про те, що в більшості реальних мереж, і, зокрема, в соціальних мережах, вузли, як правило, створюють тісно пов'язані групи, що характеризуються відносно високою щільністю зв'язків; ця ймовірність більше ніж середня ймовірність випадкового зв'язку між двома вузлами (Holland і Leinhardt, 1971;[1] Watts and Strogatz, 1998[2]).
Існують два варіанти цього терміна: глобальний і локальний. Глобальний варіант було створено для загального уявлення про кластеризацію в мережі, в той час як локальний описує вкладеність окремих вузлів.
Глобальний коефіцієнт кластеризації
Глобальний коефіцієнт кластеризації заснований на трійках вузлів. Трійка складається з трьох з'єднаних вузлів. Тому трикутник включає в себе три замкнуті трійки, по одній по центру на кожному з вузлів (n.b. це означає, що три трійки в трикутнику відбуваються водночас з перекриттям вибору вузлів). Глобальний коефіцієнт кластеризації — це число замкнутих трійок (або 3-х трикутників) над загальним числом трійок (відкритих і закритих). Перша спроба виміряти цей коефіцієнт була зроблена Луче і Перрі (1949).[3] Цей термін дає вказівку на кластеризацію у всій мережі (глобальну), і може бути застосований до обох типів мереж: ненаправлених і спрямованих(часто званих транзитивними див. Вассерман і Фауст, 1994, стор. 243[4]).
Глобальний коефіцієнт кластеризації визначається наступним чином:
У цій формулі, зв'язана трійка визначається як зв'язний підграф, що складається з трьох вершин і двох ребер. Таким чином, кожен трикутник утворює три з'єднаних трійки, пояснюючи множення на три у формулі.
Узагальнення на зважені мережі[en] було запропоноване Опсахлем і Панзарасою (2009),[5] і перевизначення, двох режимів мереж(як бінарних так і вагових) було запропоноване Опсахлем (2009).[6]
Локальний коефіціент кластеризації
Приклад локального коефіціенту кластеризації на неорієнтованому графі. Локальний коефіцієнт кластеризації синього вузла обчислюється як частка зв'язків між сусідами, які фактично реалізовані за допомогою порівняння з числом всіх можливих з'єднань. На малюнку, синій вузол має трьох сусідів, які можуть мати максимум 3 зв'язки між собою. У верхній частині малюнка всі три можливі зв'язки є реалізованими (товсті чорні сегменти), що дає нам локальний коефіцієнт кластеризації рівний 1. У середній частині малюнка тільки одне з'єднання є реалізованим (товста чорна лінія) і 2 з'єднання відсутні (пунктирні червоні лінії), що дає нам локальний коефіцієнт кластера рівний 1/3. І, нарешті, жоден з можливих зв'язків між сусідами синього вузла не буде реалізованим, що дає локальне значення коефіцієнта кластеризації рівне 0.
Граф формально складається з безлічі вершин і набору ребер між ними. Ребро з'єднує вершину з вершиною .
окіл для вершини <математика> визначається за допомогою її сусідів, що пов'язані наступним чином:
Визначимо як число вершин, , як околицю, , як вершину.
Локальний коефіцієнт кластеризації для вершини далі визначається як зв'язки між вершинами в межах його околиць, розділені на кількість посилань, які могли б існувати між ними. Для орієнтованого графа, відрізняється від , і, отже, для кожної околиці є посиланнь, які можуть існувати серед вершин в околиці ( це число сусідів вершини). Таким чином, Локальний коефіціент кластеризації для орієнтованих графів задається як[2]
Неорієнтовані граф володіє такою властивістю, що і вважаються однаковими. Тому, якщо вершина має сусідів, ребер може існувати серед вершин в межах околиці. Таким чином, Локальний коефіціент кластеризації для неорієнтованих графів може бути визначений як
Нехай — це кількість трикутників на множині вершин для неорієнтованого графа . Тобто, це число підграфів з 3-ма ребрами і 3-ма вершинами, одна з яких . Нехай — це число трійок на . Тобто, — це число підграфів (не обов'язково інддукованих) з 2-ма ребрами і 3-ма вершинами, одна з яких є і таке, що інцидентна на обох краях. Тоді ми можемо визначити коефіцієнт кластеризації як
Легко показати, що два попередніх визначення є однаковими, так як
Ці міри є рівними 1, якщо кожен сусід зв'язаний із також пов'язаний з будь-якою іншою вершиною в околиці, і ці міри дорівнюють 0, якщо жодна з вершин, що пов'язана з зв'яжеться з будь-якою іншою вершиною, що пов'язана з .
Мережевий середній коефіцієнт кластеризації
Як альтернатива глобального коефіцієнта кластеризації, загальний рівень кластеризації в мережі був виміряний Уоттсом та Строгацом[2] як середнє значення локальних коефіцієнтів кластеризації всіх вершин :[7]
Варто зазначити, що ця метрика розміщує більше ваги на низьких вузлів ступеня, в той час як співвідношення транзитивності поміщає більше ваги на високих вузлах ступеня. Насправді, зважене середнє, де кожна локальна оцінка кластеризації зважуються по збігається з глобальним коефіцієнтом кластеризації.
Граф вважається графом «Світ тісний», якщо його середній локальний коефіцієнт кластеризації значно вище, ніж у випадкового графа, побудованого на той самій множині вершин, а також якщо граф має приблизно таку ж відстань- найбільш коротку довжину шляху як і відповідний випадковий граф.
Узагальнення терміну зважені мережі[en] було запропоновано Барратом та ін. (2004),[8] і перевизначення до двочасткових графів S (названих також дворежимними мережами) було запропоноване Латапу та ін. (2008)[9] і Опсахлем (2009).[6]
Ця формула не є визначеною для графів з ізольованими вершинами; див. Кайзер (2008)[10] та Бармпотіусом та ін.[11]. Мережі з максимально можливим середнім коефіцієнтом кластеризації мають модульну структуру, і в той же час, вони мають найменшу можливу середню відстань між різними вузлами.[11]
Перколяції кластерних мереж
Для вивчення стійкості кластерних мереж був розроблений перколяційний підхід.[12][13][14]
Примітки
↑P. W. Holland and S. Leinhardt (1971). Transitivity in structural models of small groups. Comparative Group Studies. 2: 107—124.
↑Latapy, M.; Magnien, C.; Del Vecchio, N. (2008). Basic Notions for the Analysis of Large Two-mode Networks. Social Networks. 30 (1): 31—48. doi:10.1016/j.socnet.2007.04.006.