Комплексна площина![]() Комплексна площина — множина впорядкованих пар , де . Зазвичай проводиться утотожнення комплексної площини і поля комплексних чисел за принципом . Це дозволяє ввести алгебричні операції на площині . Розглянемо топологічні властивості комплексної площини і не будемо проводити різниці між парою і комплексним числом . Концепція комплексної площини, дозволяє привести комплексні числа у геометричному сенсі. Операцію додавання, здійснювати як додавання векторів. Множення двох комплексних чисел можна у найпростішому вигляді можна виразити в полярних координатах—величина або модуль добутку це добуток двох абсолютних величин, або модулів, а кут або аргумент добутку є сумою двох кутів, або аргументів. Зокрема, множення на комплексне число із модулем, що дорівнює 1 приводить до обертання. Комплексну площину іноді називають площиною Арганда, а геометричні графіки[en] на цій площині діаграмами Арганда. Вони названі в честь Роберта Аргана (1768—1822), хоча вперше їх описав норвезько-данський землевпорядник і математик Каспар Вессель (1745—1818).[1] Загальні позначенняВ комплексному аналізі, комплексні числа зазвичай позначаються символом z, в якому виділяють його дійсну (x) і уявну (y) частини: наприклад: z = 4 + 5i, де x і y є дійсними числами, і i є уявною одиницею. В цьому загальному позначенні комплексне число z відповідає точці (x, y) на декартовій площині. В декартовій системі координат, точку (x, y) також можна представити в полярних координатах наступним чином Для декартової площини можна припустити що арктангенс приймає значення лише від −π/2 до π/2 (в радіанах), і варто обережно поводитися при використанні функції арктангенса для точок (x, y) при x ≤ 0.[2] В комплексній площині дані полярні координати будуть мати форму де Тут |z| є абсолютним значенням або модулем комплексного числа z; θ, це аргумент числа z, його зазвичай обирають в інтервалі 0 ≤ θ < 2π; а остання рівність (|z|eiθ) взята із формули Ейлера. Слід зауважити, що без обмеження діапазону значень кута θ, аргумент z буде мати множину значень, оскільки комплексна експоненційна функція періодична, і має період 2π i. Тому, якщо θ є одним із значень arg(z), то іншими значення будуть задаватися як arg(z) = θ + 2nπ, де n приймає усі цілі значення ≠ 0.[4] Топологія комплексної площиниВідкриті множиниФундаментальне поняття околу вводиться на комплексній площині таким чином — околом точки називається множина виду . Геометрично на комплексній площині околи мають вигляд кола з центром в певних точках комплексної площини. Інколи для зручності необхідно розглядати і проколоті околи . Визначимо відкриту множину — згідно з визначенням із загальної топології, відкритою множина буде, якщо вона для будь-якої своєї точки містить деякий її окіл. Точка згущення і замкнена множинаТочка буде точкою згущення для множини , якщо для довільного околу перетин буде не порожнім. Іншими словами, точка є точкою згущення, якщо в довільній «близькості» до неї завжди можна знайти точки множини. Множина точок згущення називається похідною і позначається G'. Множина буде називатися замкнутою, якщо для неї справедливим є включення . Очевидно, що для довільної множини множина буде замкненою; вона називається замиканням множини . ГраницяТочка буде називатися граничною для множини , якщо для довільного околу перетин і будуть не порожніми. Множина всіх граничних точок називається граничною множиною або просто границею. Всюди щільні множиниМножина буде називатися всюди щільною в іншій множині , якщо для довільної точки і будь-якого околу перетин не порожній. Зв'язністьВідстань між множинамиЯк відомо з елементарної математики, на комплексній площині відстань між двома точками дорівнює модулю їх різниці. Тепер визначимо відстань між точкою і деякою множиною як величину . На базі цього поняття вже можна визначити відстань між двома довільними множинами в : . Зв'язністьМножина називається Зв'язною, якщо для неї виконано співвідношення . Якщо дана величина не дорівнює нулю, то множина називається незв'язним. Можна показати, що незв'язну множину можна представити у вигляді об'єднання (скінченного або зліченного) , де — зв'язні множини, що не перетинаються, називаються зв'язними компонентами множини . Потужність множини зв'язних компонент називається порядком зв'язності. Випуклі, спряжені і лінійно зв'язані множиниМножина називається спряженою відносно точки , якщо для довільної точки виконується включення . Множина називається випуклою, якщо вона спряжена відносно будь-якої своєї точки. Множина називається випуклою оболонкою множини , якщо вона випукла, і для будь-якої випуклої множини , що містить множину виконується включення . Ламаною називається множина точок комплексної площини, що представляється у вигляді об'єднання відрізків. Множина називається лінійно зв'язною, якщо для двох довільних точок існує ламана така, що виконується . Можна довести, що будь-яка лінійно зв'язана множина буде зв'язною. Звідси наслідком є те, що зв'язні всі випуклі і спряжені множини. Криві наКриві и шляхиКривою або шляхом на комплексній площині називається відображення вигляду . Особливо слід зазначити, що при такому визначенні можна конкретизувати не тільки вигляд кривої, який буде залежати від аналітичних властивостей функції , але й її напрямок. Наприклад, функції і будуть визначати однакову за виглядом криву, але вона буде проходити в протилежних напрямках. Гомотопія кривихКриві и називаються гомотопними, якщо існує крива , що залежить від параметра таким чином, що і . Розширена комплексна площина і нескінченно віддалена точкаУ комплексному аналізі часто корисно розглядати розширену комплексну площину[5], доповнену, порівняно зі звичайною, нескінченно віддаленою точкою : геометрично точка зображується точкою сфери Рімана (її «північний полюс»). За такого підходу необмежено ростуча (за модулем) послідовність вважається такою, що збігається до нескінченно віддаленої точки. Алгебричні операції з нескінченністю не виконуються, хоча кілька алгебричних співвідношень мають місце[5]: -околом нескінченно віддаленої точки вважається множина точок , модуль яких більший, ніж , тобто зовнішня частина -околів початку координат. Розширена комплексна площина називається також сферою Рімана, оскільки вона ізоморфна звичайній сфері (ізоморфізм можна встановити, наприклад, за допомогою стереографічної проєкції). Комплекснозначні функції в деяких випадках можна продовжити на сферу Рімана. Оскільки прямі на площині (за стереографічної проєкції) переходять у кола на сфері, що містять нескінченно віддалену точку, комплексні функції зручніше розглядати на сфері.[уточнити] Див. такожПримітки
|
Portal di Ensiklopedia Dunia