Роздрібнена множинаПоняття роздрі́бнених множи́н (англ. shattered sets) відіграє важливу роль в теорії Вапника — Червоненкіса, відомій також як ВЧ-теорія. Роздрібнювання та ВЧ-теорія використовуються в дослідженні емпіричних процесів[en], а також у статистичній теорії обчислювального навчання[en]. ВизначенняПрипустімо, що A є множиною, а C — класом множин. Клас C роздрі́бнює множину A, якщо для кожної підмножини a множини A існує такий елемент c класу C, що Рівнозначно, C роздрібнює A, якщо булеан P(A) = { c ∩ A | c ∈ C }. Ми застосовуємо літеру C для позначення «класу» (англ. class) або «набору» (англ. collection) множин, як у класі Вапника — Червоненкіса (ВЧ-клас). Множина A часто вважається скінченною, оскільки в емпіричних процесах нас цікавить роздрібнювання скінченних множин точок даних. ПрикладМи покажемо, що клас усіх кругів на площині (у двовимірному просторі) не роздрібнює будь-яку множину з чотирьох точок на одиничному колі, але клас усіх опуклих множин на площині роздрібнює будь-яку скінченну множину точок на одиничному колі. Нехай A є множиною з чотирьох точок на одиничному колі, а C є класом усіх кругів. ![]() Щоби перевірити, чи C роздрібнює A, ми намагаємося намалювати круг навколо кожної з підмножин точок множини A. По-перше, ми малюємо круг навколо підмножин з кожної ізольованої точки. Потім ми намагаємося намалювати круг навколо кожної з підмножин із пар точок. Це виявляється здійсненним для сусідніх точок, але неможливим для точок на протилежних сторонах кола. Як унаочнено нижче:
Оскільки існує підмножина, яку не може бути ізольовано жодним кругом із C, то ми робимо висновок, що A не роздрібнюється класом C. І, трохи поміркувавши, ми можемо довести, що жодна множина з чотирьох точок не роздрібнюється цим C. Проте, якщо ми перевизначимо C як клас усіх еліпсів, ми виявимо, що ми все ще можемо ізолювати всі підмножини, як і вище, але також і точки, які раніше були проблемними. Таким чином, ця конкретна множина з 4 точок роздрібнюється класом еліпсів. Унаочнено нижче:
Трошки поміркувавши, ми можемо зробити узагальнення, що будь-яку множину скінченних точок на одиничному колі може бути роздрібнено класом усіх опуклих множин (унаочніть з'єднанням точок). Коефіцієнт роздрібнюванняДля кількісної оцінки багатства набору множин C ми використовуємо поняття коефіцієнтів роздрібнювання (відомих також як коефіцієнти роздрібнення або функція росту, англ. shattering coefficients, shatter coefficients, growth function). Для набору C множин s⊂Ω, де Ω є будь-яким простором, часто ймовірнісним простором, а є будь-якою множиною з n точок, ми визначаємо n-тий коефіцієнт роздрібнювання набору C як де позначає потужність множини. — це найбільше число підмножин будь-якої множини A з n точок, які може бути сформовано перетином A з множинами з набору C. Ось деякі факти про :
Третя властивість означає, що якщо C не може роздрібнити будь-яку множину потужності N, то він не може роздрібнювати множини й вищих потужностей. Клас Вапника — ЧервоненкісаВЧ-розмірність класу C визначається як або, альтернативно, як Зауважте, що Якщо для будь-якого n існує множина потужності n, яку може бути роздрібнено класом C, то для всіх n, а ВЧ-розмірність цього класу C є нескінченною. Клас зі скінченною ВЧ-розмірністю називається класом Вапника — Червоненкіса або ВЧ-класом. Клас C є рівномірно Гливенка — Кантеллі[en], якщо і лише якщо він є ВЧ-класом. Див. також
Джерела
Посилання
|
Portal di Ensiklopedia Dunia