Розмірність Лебега
Розмі́рність Ле́бега або топологічна розмірність — розмірність, визначена за допомогою покриттів, найважливіший інваріант топологічного простору.[1] Розмірність Лебега простору , зазвичай позначається [1]. ВизначенняДля метричних просторівДля компактного метричного простору розмірність Лебега визначається як найменше ціле число n із такою властивістю, що при будь-якому існує скінченне відкрите -покриття , що має кратність ≤ n + 1[1]; При цьому
Для топологічних просторівДля довільного нормального (зокрема, для метризовного) простору розмірністю Лебега називається найменше ціле число таке, що до всякого скінченного відкритого покриття простору існує вписане в нього (скінченне відкрите) покриття кратності n+1. При цьому покриття називається вписаним у покриття , якщо кожний елемент покриття є підмножиною хоча б одного елемента покриття . Приклади
ІсторіяВперше топологічна розмірність введена Анрі Лебегом. Він висловив гіпотезу, що розмірність -мірного куба дорівнює . Л. Брауер вперше довів це. Точне визначення інваріанту (для класу метричних компактів) дав П. С. Урисон.[1] Див. такожЗноски
Література
|
Portal di Ensiklopedia Dunia