Теорема Банаха про замкнений графік

Формулювання теореми

Нехай X, Y — банахові простори над одним і тим же полем, L — підпростір простору X. Для того, щоб лінійний оператор був неперервним, необхідно і достатньо, щоб його графік був замкнений в декартовому добутку (якщо його розглядати як нормований простір).

Пояснення теореми

Теорема про замкнений графік зокрема говорить, що графік неперервної функції, означеної на замкненій множині, є множиною замкненою.

Література

Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia

Kembali kehalaman sebelumnya