Теорема ВеддербернаТеорема Веддерберна — твердження в абстрактній алгебрі про те, що довільне скінченне асоціативне тіло з одиницею є комутативним, тобто є полем. Теорема названа на честь англійського математика Джозефа Веддерберна. ДоведенняПозначимо F скінченне асоціативне тіло з одиницею характеристики p, Z його центр, a q = pf кількість елементів у Z. Якщо розмірність F як лінійного простору над Z рівна n то F має qn елементів. Мультиплікативну групу F* ненульових елементів тіла F можна розбити на класи еквівалентності щодо такого відношення еквівалентності:
Для позначимо N(x) централізатор елемента x (щодо множення), тобто множину елементів F, що комутують з x. N(x) є підтілом в F, що містить Z. Якщо є розмірністю векторного простору N(x) над Z, то N(x) має елементів. Число n ділиться на і для . Кількість елементів групи F* спряжених з x рівна індексу групи N(x)* в F*, або
тому: (*) , де сума здійснюється по деякому набору представників класів еквівалентності нецентральних елементів з F*. Припустимо n > 1 і нехай
де множення здійснюється по всіх первісних коренях n-того степеня з одиниці в полі комплексних чисел. Цей многочлен називається многочленом поділу кола. Якщо число ділить n i не є рівним n, то многочлен P ділить як так і
З (*) отримуємо, що також P (q) | q — 1 і, як наслідок З іншої сторони кожен множник в добутку має абсолютне значення більше від q — 1 і відповідно Тому n = 1 і F = Z, тобто F є полем. Посилання
Джерела
|
Portal di Ensiklopedia Dunia