Теорема Кронекера — Капеллі

Теорема Кронекера — Капеллі — критерій сумісності системи лінійних алгебраїчних рівнянь:

СЛАР має розв'язки тоді й лише тоді, коли ранг її матриці дорівнює рангу її розширеної матриці

  • Система має єдиний розв'язок, якщо ранг дорівнює кількості невідомих,
  • і нескінченно багато розв'язків, якщо ранг менший кількості невідомих.

Необхідність

Нехай СЛАР сумісна, тоді існує розв'язок: такий, що

Тобто, стовпець є лінійною комбінацією стовпців матриці

Отже

Достатність

Нехай Візьмемо у матриці будь-який базисний мінор.

Так як , то він буде базисним мінором і для матриці

Тоді згідно з теоремою про базисний мінор, останній стовпець матриці буде лінійною комбінацією базисних стовпчиків, тобто стовпців матриці

Отже, стовпець вільних членів системи є лінійною комбінацією стовпців матриці коефіцієнти такої лінійної комбінації і будуть розв'язком СЛАР.

Див. також

Джерела

  • Гантмахер Ф. Р. Теорія матриць. — 2025. — 757 с.(укр.)
  • Гельфанд І. М. Лекції з лінійної алгебри. — 2025. — 248 с.(укр.)
  • Безущак О. О.; Ганюшкін О. Г.; Кочубінська Є. А. (2019). Навчальний посібник з лінійної алгебри (PDF). Київ: ВПЦ "Київський університет". с. 224.(укр.)
  • В. В. Булдигін; І. В. Алєксєєва; В. О. Гайдей; О. О. Диховичний; Н. Р. Коновалова; Л. Б. Федорова (2011). Лінійна алгебра та аналітична геометрія Навч. посібник (PDF). Київ: ТВіМС. с. 224.(укр.)
  • Теорема Кронекера — Капеллі // Вища математика в прикладах і задачах / Клепко В.Ю., Голець В.Л.. — 2-ге видання. — К. : Центр учбової літератури, 2009. — С. 42. — 594 с.
  • Ланкастер П.(інші мови). Теория матриц. — 2. — Москва : Наука, 1982. — 272 с.(рос.)
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia

Kembali kehalaman sebelumnya