Голоморфна функція, що є взаємно-однозначною (тобто оборотною), є конформним відображенням, так що теорему можна формулювати в термінах конформної еквівалентності. Також, не має значення, стверджувати про існування функції або оберненої .
Можна навіть вимагати існування відображення з будь-якої однозв'язної області в будь-яку іншу однозв'язну — твердження теореми від цього не стане сильнішим.
Дана теорема здається парадоксальною, оскільки умови на область є чисто топологічними і ніяк не обумовлюють геометрію її межі.
Насправді, порівняно легко будуються конформні відображення круга не тільки на многокутники і подібні фігури, але і області на зразок круга з одним вирізаним радіусом і т. д.
Можна навіть побудувати функцію на кругу, образ якої має ніде не гладку межу.
Втім, Ріман зумів довести теорему лише в припущенні кускової гладкості межі.
Єдиність відображення
Оскільки одиничний круг легко нетотожно конформно відобразити на себе, то шукане конформне відображення єдиним бути не може.
Проте, легко бачити, що вся неоднозначність в побудові відображення відноситься до автоморфізмів одиничного круга, які утворюють дійсну 3-мірну групу Лі. Зокрема, якщо — елемент множини і φ — довільний кут, тоді існує єдине відображення із теореми Рімана, яке додатково задовольняє умовам відображає в і аргумент похідної в точці рівний куту φ.
Кожна з цих гілок є ін'єктивною в , бо з рівності випливає рівність
а з неї, зважаючи на ін'єктивність дробово-лінійної функції, рівність . Ці гілки відображають відповідно на області і , які не мають спільних точок, бо в іншому випадку знайшлися б точки такі, що , але з останнього рівності знову випливає рівність , а тому що неможливо оскільки для всіх
Область містить деякий круг а тому в не набуває значень з цього кола. Тому функція
очевидно є голоморфною і ін'єктивною і обмеженою в :
Позначимо як сім'ю всіх голоморфних і ін'єктивних в функцій, по модулю всюди менших 1. Ця
сім'я є непустою, бо містить функцію і по теоремі Монтеля вона є нормальною. Оскільки є ін'єктивною в , то у довільній точці Підсім'я сім'ї , до якої належать усі функції з для яких
в деякій фіксованій точці є нормальною. Також якщо послідовність функцій збігається рівномірно на компактних підмножинах то границя цієї послідовності належить .
Дійсно з наслідку теореми Гурвіца границя послідовності функцій , що сходиться рівномірно на будь-якій компактній підмножині, може бути лише ін'єктивною функцією або константою але останній випадок виключений нерівністю . Також якщо для елементів цієї послідовності, то і для граничної функції Отож також і
Розглянемо на функціонал Він є неперервним адже для рівномірно збіжної на компактах послідовності із границею , послідовність похідних теж рівномірно на компактах збігається до зокрема
Оскільки є компактною (у просторі голоморфних функцій із компактно-відкритою топологією) множиною то існує функція на якій цей функціонал досягає максимуму, тобто така, що для всіх виконується нерівність
Оскільки функція то вона конформно відображає в одиничний круг . Також оскільки в іншому випадку в була б функція
для котрої
що суперечить означенню функції .
Функція відображає на весь круг . Справді, нехай не приймає в деякого значення . Оскільки , то . Але і значення не приймається цією функцією в (оскільки ), і, отже, по теоремі про монодромію в можна виділити однозначну гілку кореня
яка належить . Але тоді належить і функція
для котрої
Але бо , тобто і що суперечить означенню функції .
Спроби узагальнити дану теорему на дійсну конформну геометрію в розмірностях вище 2, як і на комплексну геометрію в розмірностях вище 1, використовуючи поняття голоморфного відображення, до особливих успіхів не привели.
Доведено, що і в тому і іншому випадку для еквівалентності областей вже недостатньо чисто топологічних умов.
У будь-якому випадку, такі загальні твердження про еквівалентність областей в багатовимірних просторах науці не відомі.