Теорія масового обслуговуванняТеорія масового обслуговування, або теорія черг (англ. queueing theory), — розділ теорії ймовірностей, метою досліджень якого є раціональний вибір структури системи обслуговування та процесу обслуговування на основі вивчення потоків вимог на обслуговування, що надходять у систему і виходять з неї, тривалості очікування і довжини черг[1]. У теорії масового обслуговування використовуються методи теорії ймовірностей та математичної статистики. ІсторіяПерші задачі теорії масового обслуговування (ТМО) були розглянуті співробітником Копенгагенської телефонної компанії Агнером Ерлангом[en] у період між 1908 і 1922 роками. Стояло завдання упорядкувати роботу телефонної станції і заздалегідь розрахувати якість обслуговування споживачів залежно від числа використовуваних пристроїв. Є телефонний вузол (обслуговуючий прилад), на якому телефоністки час від часу з'єднують окремі номери телефонів один з одним. Системи масового обслуговування (СМО) можуть бути двох видів: з очікуванням і без очікування (тобто з втратами). У першому випадку виклик (вимога, заявка), що прийшов на станцію в момент, коли зайнята потрібна лінія, залишається чекати моменту з'єднання. У другому випадку він «залишає систему» і не вимагає турбот СМО. ПотікОднорідний потікПотік заявок однорідний, якщо:
Потік без післядіїПотік без післядії, якщо число подій за будь-який інтервал часу (, ) не залежить від числа подій на будь-якому іншому (, ) інтервалі часу. Стаціонарний потікПотік заявок стаціонарний , якщо ймовірність появи n подій на інтервалі часу (, ) не залежить від часу , а залежить тільки від довжини цієї ділянки. Найпростіший потікОднорідний стаціонарний потік без післядії є найпростішим або пуассонівським потоком. Число подій такого потоку, що випадають на інтервал , розподілено за законом Пуассона: Пуассонівський потік заявок зручний при вирішенні завдань ТМО. Щиро кажучи, найпростіші потоки рідкісні на практиці, проте багато потоків, що моделюються, припустимо розглядати як найпростіші. Миттєва щільністьМиттєва щільність (інтенсивність) потоку дорівнює границі відношення середнього числа подій, що припадають на елементарний інтервал часу (, ) до довжини інтервалу часу (), коли останній прямує до нуля. або, для найпростішого потоку, де дорівнює математичному очікуванню числа подій на інтервалі . Формула Літтла
Література
Бібліографія
Див. також
|
Portal di Ensiklopedia Dunia