Функція Акермана визначається рекурсивно для невід'ємних цілих чисел та таким чином:
Рекурсія завжди закінчується, оскільки або зменшується значення , або значення зберігається, а зменшується значення . Тобто пара завжди зменшується з точки зору лексикографічного порядку.
Функція зростає дуже швидко (значно швидше за експоненту). Наприклад, , що перевищує кількість атомів у видимому Всесвіті.
Історія
Початковий варіант такої функції (у дещо різній формі) запропонували учні Девіда Гільберта — Габрієль Судан (нім.G. Sudan) (1927 року) і Вільгельм Акерман[en] (1928). Гільберт висловив гіпотезу, що функція не є примітивно-рекурсивною, і Вільгельм Акерман (що став секретарем Гільберта) цю гіпотезу довів. Оригінальна функція Аккермана мала три аргументи[1]. Варіант із двома аргументами запропонували Роза Петер і Рафаєль Робінсон[2] і саме його зазвичай мають на увазі під назвою функція Акермана.
↑Cristian Calude, Solomon Marcus, Ionel Tevy. The first example of a recursive function which is not primitive recursive // Historia Math. : journal. — 1979. — Vol. 6, no. 4 (11). — P. 380—384. — DOI:10.1016/0315-0860(79)90024-7.