Ядрова оцінка густини розподілу![]() В статистиці, я́дрова оці́нка густини́ розпо́ділу (англ. Kernel density estimation) — це непараметричний метод оцінки функції густини випадкової величини за вибіркою. Ядрова оцінка густини є важливою задачею згладжування даних; при застосуванні методу судження щодо статистичних властивостей популяції здійснюється на базі скінченної вибірки. В деяких галузях (таких як обробка сигналів, економетрика) поряд з ядровою оцінкою густини використовують назву вікно Парцель-Розенблата, на честь Емануеля Парцена[en] та Мюрея Розенблата[en], котрі незалежно один від одного створили метод в теперішньому його вигляді.[1][2] ВизначенняНехай (x1, x2, …, xn) — вибірка н.о.р.в.в., отримана з деякого розподілу з невідомою густиною ƒ. Потрібно оцінити форму цієї функції ƒ. Ядрова оцінка цієї густини ƒ задається формулою де K(·) — статистичне ядро — симетрична, але не обов'язково додатня функція з інтегралом рівним одиниці, h > 0 — параметр згладжування, який ще називають пропускно́ю зда́тністю. Практичне обчислення параметра згладжуванняЯкщо використовується гаусівські ядрові функції для оцінки одновимірних даних і оцінювана базова густина є стандартною нормальною, тоді можна показати, що оптимальним значенням параметра згладжування, h, є
Таке наближення називається нормально розподілене наближення (або гаусівське наближення).
Див. також
Джерела
|
Portal di Ensiklopedia Dunia