三格骨牌![]() 三格骨牌(Tromino),又稱三連塊,是一種多格骨牌,每塊以三個全等的正方形連成[1],若一骨牌翻面或是旋轉後,仍視為同一種骨牌的話,共有兩種三格骨牌,可以由英文字母I和L代表(L有時也會表示為V)。 若一骨牌翻面後的形狀和原來不同時,可以不視為同一種骨牌,但由於二種三格骨牌都是軸對稱,骨牌翻面之後圖案都和原來相同,因此仍然只有二種三格骨牌。若一骨牌翻面或是旋轉後形狀和原來不同,可以不視為同一種骨牌,I形骨牌可以旋轉90度,而L形骨牌可以旋轉90度、180度及270度,再加上原來的二種,這樣就會有六種三格骨牌[2][3]。 三格骨牌定理![]() 若在2n×2n的棋盤抽走其中一個單位正方形,剩下的圖形可被一定數量的L形三格骨牌互不重疊地覆蓋。 這個定理由多格骨牌的發明人——一名22歲的哈佛學生Solomon Golomb提出[4]。 證明使用數學歸納法: 當n=1:從2×2的棋盤抽走一個單位正方形,必定是一個L形三格骨牌,它自然可被L形三格骨牌覆蓋。 假設在2n×2n的棋盤抽走其中一個單位正方形,剩下的圖形可被完全覆蓋:
當2n×2n可被完全覆蓋時,2n+1×2n+1也可。 三格L形骨牌自分割問題三格L形骨牌有一個特點,L形骨牌可以分割為四個長度只有原來一半的L形骨牌,若將骨牌再往下分割,可以分割為4n片大小更小的骨牌。 若針對任何的數字n,也可以將三格L形骨牌分割為n2片較小的三格L形骨牌。 參考資料
外部連結
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia