不可及数
不可及数(Untouchable Number)是指无法表示为任何一个正整数(包括它自己)的全部真因數之和的正整数。 比如5就是不可及数。将5分解为含有1且全部加数均不重复的形式只有5=1+4一种;由于其它的分解方式均含相同的数或不含1,故5是不可及数。 相反的,4就不是不可及數,因為4可以表示為1+3,這是9的正因子(不考慮9本身)的和,因此4不是不可及數。 在线数列百科OEIS的A005114数列展示了递增排列的不可及数: 2, 5, 52, 88, 96, 120, 124, 146, 162, 188, 206, 210, 216, 238, 246, 248, 262, 268, 276, 288, 290,292,304,306,…… 历史关于不可及数的最早研究历史至少可以追溯到大约公元1000年伊本·塔希尔·巴格达迪的研究,其发现2和5都是不可及数。[1][2] 埃尔德什·帕尔证明了不可及数有无穷多个。 性质
参见參考資料
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia