严谨 (数学)
数学上,严谨(rigor,mathematical rigor)不同于生活中的严谨,它指数学系统尤指公理系统的完备性和自洽性。 完备性指公理数量不多不少正好可以推理出这门学科的全部结论;自洽性指公理系统内不存在悖论(即既是真又是假的命题)。比如仿射几何加上平行公设就成为欧几里得几何,或者加上第五公设的反命题就成为非欧几何之一,但后两者并不满足完备性要求,只有仿射几何学才是欧几里得几何类中的完备系统。一致性与哥德爾不完備定理并不矛盾,前者断言不存在既真又假的命题,而后者断言存在既不可证明又不可证伪的命题,就好比第五公设之于欧几里得几何,连续统假设之于公理化集合论,选择公理之于策梅洛-弗兰克尔集合论。 數學的嚴謹數學的嚴謹可以應用於數學的證明方法和數學的實踐方法 數學證明數學的嚴謹經常被認為是數學證明的標準。 其的歷史可追溯至希臘時期的數學,特別是歐幾裡得的《幾何原本》。 直到19 世紀,歐幾裡得的《幾何原本》都被視為極其嚴謹和深刻。然而,在19 世紀末,希爾伯特意識到該著作隱含了某些假設,而這些假設無法從歐幾裡得的公理中得到證明。 例如:兩個圓可以相交於一點,某個點在一個角度內,並且圖形可以相互疊加)。 這與數學中的嚴格證明的理念相反,在嚴格證明中,所有假設都需要陳述,並且不能隱含任何內容。因此,數學家用公理系統開發了新的基礎,以解決《幾何原本》中不嚴謹的地方。(例如希爾伯特公理、伯克霍夫公理、塔斯基公理)。 物理證明數學嚴謹對物理學有兩個問題:
物理學中數學嚴謹的兩個問題都引起了科學哲學的廣泛關注。 参考文献
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia