二階無限面體堆砌
在幾何學中,二階無限面體堆砌(英語:order-2 apeirohedronal honeycomb)是一種三維空間的密鋪,由無限面體組成,每個頂點周圍皆有兩個無限面體,但由於所有頂點共面,因此,整個空間只需要二個無限面體就能完全密鋪,因此二階無限面體堆砌也可以視為一種二胞體。 二階正無限面體堆砌一共有三種:二階三角形鑲嵌堆砌、二階正方形鑲嵌堆砌以及二階六邊形鑲嵌堆砌,其在施萊夫利符號中用{p, q, 2}表示,其中p、q滿足等式[1]。它是一種能以有限個多面體完成的空間堆砌(密鋪),他可以被視為是第二種三維歐幾里得平面上的正多面體堆砌,但他其實是退化的結果。兩個正無限面體沿著面連接就足以填充整個空間無窮的大小,因為其面數、邊數皆為無限大,且具有180°的二面角,因為180°的二面角是完整空間360°的一半。 二階三角形鑲嵌堆砌二階三角形鑲嵌堆砌是一種二階無限面體堆砌,由三角形鑲嵌堆砌而成,每個條稜周圍都有2個三角形鑲嵌,在施萊夫利符號中用 {3,6,2} 表示,其每個頂點都是2個三角形鑲嵌的公共頂點,因此頂點圖為六邊形二面體,在施萊夫利符號中用 {6,2} 表示。 二階正方形鑲嵌堆砌二階正方形鑲嵌堆砌是一種二階無限面體堆砌,由正方形鑲嵌堆砌而成,每個條稜周圍都有2個正方形鑲嵌,在施萊夫利符號中用 {4,4,2} 表示,其每個頂點都是2個正方形鑲嵌的公共頂點,因此頂點圖為四邊形二面體,在施萊夫利符號中用 {4,2} 表示。 二階無限胞體堆砌參見
參考文獻
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia