伽罗瓦扩张伽罗瓦扩张是抽象代数中伽罗瓦理论的核心概念之一。伽罗瓦扩张是域扩张的一类。如果某个域扩张L/K既是可分扩张也是正规扩张,则称其为伽罗瓦扩张。另一个等价的定义是:伽罗瓦扩张是使得其上的环自同构群的固定域为其基域的域扩张。伽罗瓦扩张上的自同构群称为伽罗瓦群,而且伽罗瓦扩张的中间域与其伽罗瓦群的子群之间的关系满足伽罗瓦理论基本定理。 等价定义给定有限的域扩张L/K。L/K是伽罗瓦扩张,当且仅当它满足以下四个相互等价的条件中的任何一个[1]:147:
例子给定域扩张,其中的θ = 3√2是2的三次方根,ω = e2iπ⁄3是三次单位根。是多项式P = X3 - 2在有理数域上的分裂域,而且它在其中没有重根,所以是伽罗瓦扩张[1]:52-53。它的扩张次数是6,而它的自同构群元素有六个,同构于3次对称群。有关其具体结构,可参见伽罗瓦理论基本定理。 性质如果域扩张基域的特征为0,那么所有代数扩张都是可分扩张,这时所有的正规扩张都是伽罗瓦扩张。 如果域扩张L/K是伽罗瓦扩张,则中间扩张K⊂F⊂L中,L/F也是伽罗瓦扩张[1]:149。 域K的代数闭包Kalg是K的伽罗瓦扩张,当且仅当K是完美域。 参见参考来源
参考文献
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia