倒向随机微分方程倒向随机微分方程(BSDE)是带有终点条件的随机微分方程,其解要根据底层滤波进行调整。BSDE自然地出现在各种应用中,如随机控制、金融数学与非线性费曼-卡茨公式。[1] 背景1973年让-米歇尔·比斯姆提出了BSDE线性情形[2],1990年法国学者Etienne Pardoux和中国学者彭实戈合作发表的论文中提出BSDE非线性情形,线性是广泛的非线性中的一特殊形式[3][4]。 数学框架固定终点时刻与概率空间。令为布朗运动,其自然滤波。BSDE是积分方程,其类型为 其中称作BSDE的生成器,终点条件是-可测随机变量,解包含随机过程、,其适应于过滤。 例子在情形下,BSDE (1)简化为 若,则根据鞅表示定理,存在唯一的随机过程使、满足BSDE (2)。 另见参考文献
阅读更多
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia