偶然對消微積分中偶然對消的例子 偶然對消或異常對消(Anomalous cancellation)是指算術上不正確的處理,但其結果恰好是正確的。例如在化簡分數時直接將分子和分母各位數中相同的數字刪除,這不是正確的約分方法,大部份情形下得到的答案是錯的,但偶爾這樣的運算會出現正確的結果[1]。 以下是一些偶然對消的例子,十進制下分子及分母都是二位數,分子及分母不相等,且皆非11的倍數,可以偶然對消的分數只有以下這些以及其倒數:
博厄斯(Ralph P. Boas, Jr)分析了其他進制下的偶然對消,例如4進制下,分子及分母不相等的二位數分數,偶然對消的例子只有32/13 = 2/1及其倒數[2]。 二位以上的分數也會有偶然對消,例如165/462 = 15/42。 基本性质若采用以素数进位的数位表示法(也即p-进制数),则这种对消没有分子分母在两位数及以下的解。证明如下:反证假设存在这样的对消,不失一般性的,设这样的对消满足以下等式:
其中用双竖线表示两个数在数位上的拼接。这可以推出
注意到 都应该是-进制下的一位整数,故必然有。而由无法为0(否则对消后将原先非零的数变成了0),故唯一解满足,同时这也将导出。该情况下化简成立,但并非化到最简的情形。 相關條目參考資料
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia