內模型在數理邏輯裡,令T 是在集合論的語言 中的一個理論。 若M 是 描述集合論的一個模型,且N 是M 中的一個類,能使得 為T包含了所有M的序數的模型,則稱N 為T(在M 內)的內模型[1]通常,此類模型會是馮·諾伊曼全集V 的傳遞子集,或有時會為V 的通集擴張。 集合論的模型稱之為標準的,若此模型的元素關係是侷限於此模型中的真實元素關係。模型稱之為傳遞的,若其為標準的,且之中的基礎類為集合中的傳遞類。集合論的模型通常假定為傳遞的,除非明確指明其為非標準的。內模型是傳遞的,傳遞模型是標準的,而標準模型則是良基的。 假定存在一個ZFC 的標準模型,要比假定存在一個模型來得強。實際上,若存在一個標準模型,則會存在一個包含於所有標準模型中的最小標準模型,稱之為最小模型。 用途談及某理論的內模型時,考慮的理論通常是 ZFC 或其擴展,例如 ZFC + 存在可測基數。假如省略了所考慮的理論,則通常假定模型是 ZFC 的內模型。然而,有時也會研究 ZFC 的子理論(例如ZF或KP集合論)的內模型。 參考資料
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia