全基因组关联分析(Genome-wide association study, GWA study, GWAS)是指在人类全基因组范围内找出存在的序列变异,即单核苷酸多态性(SNP),从中筛选出与疾病相关的SNPs。 全基因组关联分析研究通常侧重于单核苷酸多态性(SNP)与人类重大疾病等性状之间的关联,但也同样适用于任何其他遗传变异和任何其他生物。
An illustration of a Manhattan plot depicting several strongly associated risk loci. Each dot represents a SNP, with the X-axis showing genomic location and Y-axis showing association level. This example is taken from a GWA study investigating microcirculation, so the tops indicates genetic variants that more often are found in individuals with constrictions in small blood vessels.[1]
当应用于人类数据时,GWA 研究会比较特定性状或疾病的不同表型参与者的 DNA。这些参与者可能是患有某种疾病的人(病例)和没有这种疾病的类似的人(对照组),也可能是某种特质(如血压)具有不同表型的人。这种方法被称为 "表型优先"(phenotype-first),即首先根据参与者的临床表现进行分类,而不是"基因型优先"(genotype-first)。每个人提供一份 DNA 样本,使用 SNP 阵列从中读取数百万个基因变异。如果有重要的统计证据表明,一种变异类型(一种等位基因)在疾病患者中更为常见,那么这种变异就被认为与疾病相关。然后,相关的 SNPs 就被认为是人类基因组中可能影响疾病风险的区域的标记。
GWAS研究调查的是整个基因组,而不是专门测试少量预先指定基因区域的方法。因此,GWAS 是一种非候选基因驱动(non-candidate-driven)的方法,与基因特异性候选基因驱动的研究(gene-specific candidate-driven studies)不同。GWA 研究能确定 DNA 中与疾病相关的 SNPs 和其他变异,但它们本身并不能确定哪些基因是致病基因[2][3][4]。
^Manolio TA. Genomewide association studies and assessment of the risk of disease. The New England Journal of Medicine. July 2010, 363 (2): 166–76. PMID 20647212. doi:10.1056/NEJMra0905980.
^Klein RJ, Zeiss C, Chew EY,ect. Complement factor H polymorphism in age-related macular degeneration. Science, 2005, 308(5720): 385−389.
^Samani NJ, Erdmann J, Hall AS, ect. Genomewide associationanalysis of coronary artery disease. N Engl J Med, 2007,357(5): 443−453.
^ 10.010.1Herbert A, Gerry NP, McQueen MB, ect. A common geneticvariant is associated with adult and childhood obesity.Science, 2006, 312(5771): 279−283.
^ 11.011.1Rosskopf D, Bornhorst A, Rimmbach C, ect. Comment on “A common genetic variant is associatedwith adult and childhood obesity”. Science, 2007,315(5809): 187: author reply 187.
^ 12.012.1Frayling TM, Timpson NJ, Weedon MN, ect. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science, 2007,316(5826): 889−894.
^ Saxena R, Voight BF, Lyssenko V, ect. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science, 2007, 316(5829): 1331−1336.
^Ubeda M, Rukstalis JM, Habener JF. Inhibition of cyclindependent kinase 5 activity protects pancreatic beta cells from glucotoxicity. J Biol Chem, 2006, 281(39): 28858−28864.
^Foley AC, Mercola M. Heart induction by Wnt antagonists depends on the homeodomain transcription factor Hex. Genes Dev, 2005, 19(3): 387−396.
^Samani NJ, Erdmann J, Hall AS, Hengstenberg C,ect. Genomewide association analysis of coronary artery disease. N Engl J Med, 2007, 357(5): 443−453.
^Spielman RS, McGinnis RE, Ewens WJ. Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet, 1993, 52(3): 506−516.
^Newton-Cheh C, Hirschhorn JN. Genetic association studies of complex traits: design and analysis issues. Mutat Res, 2005, 573(1-2): 54−69.
^Sham PC, Cherny SS, Purcell S, Hewitt JK. Power of linkage versus association analysis of quantitative traits, by use of variance-components models, for sibship data. Am J Hum Genet, 2000, 66(5): 1616−1630.
^Abasht B, Lamont SJ. Genome-wide association analysis reveals cryptic alleles as an important factor in heterosis for fatness in chicken F2 population. Animal Genetics. October 2007, 38 (5): 491–498. PMID 17894563. doi:10.1111/j.1365-2052.2007.01642.x.
^YAN Wei-Li, GU Dong-Feng. Issues on association studies on complex disease. Acta Genetica Sinica, 2004, 31(5): 533−537.