全序关系全序关系,也称为线性顺序(英語:Total order, linear order)即集合上的反对称的、传递的和完全的二元关系(一般称其为)。 若满足全序关系,则下列陈述对于中的所有和成立:
满足全序关系的集合叫做全序集合、线性序集合、简单序集合或链。 链还常用来描述偏序集合的全序子集。 全序关系的完全性可以如下这样描述:集合中的任何一对元素都是可相互比较的。 注意完全性条件蕴涵了自反性:,因此全序关系也是(满足“完全性”条件的)偏序关系。 严格全序对于每一(非严格)全序关系≤都有一关联的非对称的严格全序关系<,它可以用以下两种等价的方式定义:
性质: 我们可以通过指定为三分二元关系,用这两种等阶的方式来定义全序:
另两个关联的关系是补关系和,它们构成了四元组。 我们可以用这四个关系中的任何一个来定义全序集,符号指明了全序集的严格性。 例子
参见引用
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia