八階八邊形鑲嵌
在幾何學中,八階八邊形鑲嵌是由八邊形組成的雙曲面正鑲嵌圖,在施萊夫利符號中用{8,8}表示。八階八邊形鑲嵌即每個頂點皆為八個八邊形的公共頂點,頂點周圍包含了八個不重疊的八邊形,一個八邊形內角135度,八個八邊形超過了360度,因此無法因此無法在平面作出,但可以在雙曲面上作出。 對稱性這個鑲嵌代表一個由八條鏡射線相交於一點並定義一個正八邊形基本域的萬花筒。 這由八個四階交叉反射性在軌型符號被稱為(*44444444)。在考斯特表示法可表示為[8,8*],從三個的鏡射線當中移除兩條穿過八邊形中心的鏡射線。 相關多面體與鑲嵌該鑲嵌在拓樸學中也和每個頂點有著八個面的多面體及鑲嵌相關, 施萊夫利符號皆為{n,8},而考斯特符號為
該鑲嵌在拓樸學上和頂點圖是(8n)的一系列的鑲嵌的一部份。
參見參考資料
外部連結
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia