凹凸性 (幾何)在几何学中,一个幾何圖形可分为凸或凹的。例如多邊形和多面體。其中,凸的多邊形稱為凸多邊形、凹的多邊形則可稱為凹多邊形或非凸多邊形,多面體與多胞體亦然。然而在三維或更高維度的空間中,不是凸的幾何圖形不一定會是凹幾何圖形,亦可能是星形幾何圖形,因此在三維或更高維度的空間中較常分為凸與非凸。 凸幾何圖形凸幾何圖形是指内部为凸集的幾何圖形[1],二維空間中的凸幾何圖形稱為凸多邊形、三維空間則稱凸多面體。若一多胞形的内部为凸集,則稱凸多胞形。 二維空間中的凸幾何圖形稱為凸多邊形,简单多边形的下列性质与其凸性等价: 凸幾何圖形的凸包與其邊界相同。 凹幾何圖形凹幾何圖形是指内部不是凸集的幾何圖形,在二維空間中,不是凸集的簡單多邊形,稱為凹多边形(Concave polygon)[2]或凹角[3]。 凹多邊形至少存在一個內角大於180度。 在三維空間中,不是凸的幾何圖形不一定會是凹幾何圖形,亦可能是星形多面體,因此在三維空間中較常分為凸與非凸。
嚴格凸與非嚴格凸![]() 如果一个简单多边形的每个内角严格小于180度,是严格凸的;如果每个非相邻顶点间的线段除端点外严格位于多边形的内部,也是严格凸的。 所有非退化三角形都是严格凸的。 星形幾何圖形星形幾何圖形是非凸幾何圖形的一個特例,其並未有一個明確的定義。在二維空間中,稱為星形多邊形,數學家Branko Grünbaum指出了兩種由克普勒提出的定義:一種是具有自相交稜的正星形多邊形,且自相交的稜不產生新的頂點,另一種是邊可遞的簡單凹多邊形[4]。 參見参考文献
外部链接 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia