函數問題在计算复杂性理论内,函数问题(英語:Function problem)或者功能性问题是一种计算问题,对任何一种输入都预期会有单一个输出,但是输出不像是决定性问题一样这么单纯。换句话说,输出不只是或否,比决策问题复杂得多。重要的范例像是旅行推销员问题,询问一张图是否有可以绕过每一点的不重复路径(输出为路径),以及整数分解,输出为输入的质因数。 因为没有明显类比的语言,函数问题比起决定型问题要难以研究。而且因为输出的可能变多,在解决输入输出之间的转换,函数问题归约的过程也比较微妙。函数问题也可以用像是决定性问题的方式来分成各种复杂度类。举例来说FP是指可以用确定型图灵机在多项式时间里面可以解决的函数问题(类似于决定性问题的P),而FNP是指可以用非确定型图灵机在多项式时间里面可以解决的函数问题(类似于决定性问题的NP)。 对所有能在多项式时间内解决的的函数问题,一定存在一个雷同的决定型问题,可以用多项式时间图灵归约将后者归约为前者的方式,解决这个函数问题。举例,旅行推销员问题的决定型问题版本如下:
给定这个决定性问题的解答,我们则可以解决旅行推销员问题如下:
这个演算法将旅行推销员问题的时间复杂度放进FPNP内(可以在多项式时间之内,以决定性图灵机和一个能解决NP问题的神谕解决的问题),并且事实上是这个复杂度类的完备问题。 参考资料
参见 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia