刚性方程
在数学領域中,剛性方程(stiffness equation)是指一个微分方程,其數值分析的解只有在時間間隔很小時才會穩定,只要時間間隔略大,其解就會不穩定。目前很難去精确地去定義哪些微分方程是刚性方程,然而粗略而言,若此方程式中包含使其快速變動的項,則其為剛性方程。 在積分微分方程時,若某一區域的解曲線的變化很大,會希望在這個區域的積分間隔密一些,若另一區域的曲線近似直線,且斜率接近零,會希望在這個區域的積分間隔鬆一些。不過針對一些問題,就算曲線近似直線,仍然需要用非常小的積分間隔來積分,這種現象稱為「剛性」。有時可能會出現兩個不同問題,一個有「剛性」,另一個沒有,但兩個問題卻有同一個解的情形。因此「剛性」不是解本身的特性,而是微分方程的特性,也可以稱為是刚性系統。 範例![]() 考虑下面的初值问题: 其精确解是
會希望数值解能够具有相同的特性。 若以歐拉方法來求數值解,則使用不同的步长(step size)將會得到不同的結果。第一种,步长的欧拉法强烈的震荡并且很快离开了图的边界。当将步长减半为时,得到的结果在图的范围以内。但是它依然在0附近震荡,并且不可能表示精确的解。 其求得的結果比欧拉法的結果要好很多。如上图所示,数值结果单调地减少到零,如同精确解一样。 特征剛性系統的特色是該系統所有特征值的实部均为负数,并且其中特征值实部絕對值中,最大和最小的比值远大于1。 龙格-库塔法將龍格-庫塔法應用至測試方程,可以得到如的形式,並可歸納出,其中稱為穩定性函數。因此的條件等價於。這啟發了絕對穩定區域(有時簡稱為穩定區域)的定義,亦即集合。 若一個方法的穩定區域包含(即左半平面),則稱該方法為A-穩定。 例子: 欧拉与梯度法![]() ![]() 参见参考资料
外部链接 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia