别列津斯基-科斯特利茨-索利斯相變 (英語:Berezinskii–Kosterlitz–Thouless transition ,又稱BKT相變; 科斯特利茨-索利斯相變及KT相變)是二維XY模型 中的一种相變 。它是指超过某一臨界溫度时,系统中的渦旋-反渦旋束縛態融化成为不成對的涡旋和反涡旋的相變。這種相變是以凝聚態物理學 家瓦季姆·別列津斯基 、约翰·科斯特利茨 和戴維·索利斯 命名的。BKT相變在凝聚態物理學中多個可用XY模型作近似的系統中出現,例如約瑟夫森接面 陣列和薄無序超導顆粒膜。這個詞最近還被研究二維超導絕緣體相變的社群應用,用於把庫珀對 釘在絕緣區,能夠這樣做是因為超导中的这一相变与BKT相變有相似的地方。
對這種相變的研究使得索利斯和科斯特利茨於2016年與鄧肯·霍爾丹 一同獲授諾貝爾物理學獎 。
XY模型
XY模型 的哈密頓 是
H
=
−
J
∑
⟨
i
,
j
⟩
S
i
⋅
S
j
=
−
J
∑
⟨
i
,
j
⟩
cos
(
θ
i
−
θ
j
)
{\displaystyle H=-J\sum _{\langle i,j\rangle }\mathbf {S} _{i}\cdot \mathbf {S} _{j}=-J\sum _{\langle i,j\rangle }\cos(\theta _{i}-\theta _{j})}
S
i
=
(
cos
θ
i
,
sin
θ
i
)
{\displaystyle {\boldsymbol {S}}_{i}=(\cos {\theta _{i}},\sin {\theta _{i}})}
格林函數 (傳播子 )是
G
(
r
i
−
r
j
)
=
⟨
S
i
⋅
S
j
⟩
=
⟨
cos
(
θ
i
−
θ
j
)
⟩
=
⟨
e
i
(
θ
i
−
θ
j
)
⟩
{\displaystyle G({\boldsymbol {r}}_{i}-{\boldsymbol {r}}_{j})=\langle {\boldsymbol {S}}_{i}\cdot {\boldsymbol {S}}_{j}\rangle =\langle \cos(\theta _{i}-\theta _{j})\rangle =\langle e^{i(\theta _{i}-\theta _{j})}\rangle }
G
(
r
i
−
r
j
)
∼
exp
(
−
r
log
2
β
J
)
{\displaystyle G({\boldsymbol {r}}_{i}-{\boldsymbol {r}}_{j})\sim \exp \left(-r\log {\frac {2}{\beta J}}\right)}
G
(
r
i
−
r
j
)
∼
(
1
r
)
1
/
2
π
β
J
{\displaystyle G({\boldsymbol {r}}_{i}-{\boldsymbol {r}}_{j})\sim \left({\frac {1}{r}}\right)^{1/2\pi \beta J}}
動力學
単独渦旋的能量
E
∼
J
2
∫
d
2
r
(
∇
θ
)
2
=
J
2
∫
a
L
d
2
r
2
π
d
r
1
r
2
=
π
J
log
(
L
a
)
{\displaystyle E\sim {\frac {J}{2}}\int {\mathrm {d} }^{2}r(\nabla \theta )^{2}={\frac {J}{2}}\int _{a}^{L}d^{2}r2\pi {\mathrm {d} }r{\frac {1}{r^{2}}}=\pi J\log \left({\frac {L}{a}}\right)}
S
=
log
(
L
a
)
2
{\displaystyle S=\log \left({\frac {L}{a}}\right)^{2}}
F
=
E
−
T
S
=
(
π
J
−
2
T
)
log
(
L
a
)
{\displaystyle F=E-TS=(\pi J-2T)\log \left({\frac {L}{a}}\right)}
T
B
K
T
=
π
J
2
{\displaystyle T_{BKT}={\frac {\pi J}{2}}}
一對渦旋的能量
E
∼
−
π
J
∑
i
≠
j
n
i
n
j
log
|
r
i
−
r
j
a
|
+
π
J
(
∑
i
n
i
)
2
log
(
L
a
)
{\displaystyle E\sim -\pi J\sum _{i\neq j}n_{i}n_{j}\log \left|{\frac {{\boldsymbol {r}}_{i}-{\boldsymbol {r}}_{j}}{a}}\right|+\pi J\left(\sum _{i}n_{i}\right)^{2}\log \left({\frac {L}{a}}\right)}
E
∼
2
π
J
log
|
r
i
−
r
j
a
|
{\displaystyle E\sim 2\pi J\log \left|{\frac {{\boldsymbol {r}}_{i}-{\boldsymbol {r}}_{j}}{a}}\right|}
參考資料
Березинский, В. Л., Разрушение дальнего порядка в одномерных и двумерных системах с непрерывной группой симметрии I. Классические системы, ЖЭТФ, 1970, 59 (3): 907–920 (俄语) . Translation available: Berezinskii, V. L., Destruction of long-range order in one-dimensional and two-dimensional systems having a continuous symmetry group I. Classical systems (pdf) , Sov. Phys. JETP, 1971, 32 (3): 493–500 [2016-10-04 ] , Bibcode:1971JETP...32..493B , (原始内容存档 (PDF) 于2019-07-13)
Березинский, В. Л., Разрушение дальнего порядка в одномерных и двумерных системах с непрерывной группой симметрии II. Квантовые системы, ЖЭТФ, 1971, 61 (3): 1144–1156 (俄语) . Translation available: Berezinskii, V. L., Destruction of long-range order in one-dimensional and two-dimensional systems having a continuous symmetry group II. Quantum systems (pdf) , Sov. Phys. JETP, 1972, 34 (3): 610–616 [2016-10-04 ] , Bibcode:1972JETP...34..610B , (原始内容存档 (PDF) 于2019-07-13)
Kosterlitz, J. M.; Thouless, D. J., Ordering, metastability and phase transitions in two-dimensional systems, Journal of Physics C: Solid State Physics, 1973, 6 : 1181–1203, Bibcode:1973JPhC....6.1181K , doi:10.1088/0022-3719/6/7/010
McBryan, O.; Spencer, T., On the decay of correlations in SO(n)-symmetric ferromagnets, Commun. Math. Phys., 1977, 53 : 299, Bibcode:1977CMaPh..53..299M , doi:10.1007/BF01609854
B. I. Halperin, D. R. Nelson, Phys. Rev. Lett. 41, 121 (1978)
A. P. Young, Phys. Rev. B 19, 1855 (1979)
Resnick, D.J.; Garland, J.C.; Boyd, J.T.; Shoemaker, S.; Newrock, R.S., Kosterlitz Thouless Transition in Proximity Coupled Superconducting Arrays, Phys. Rev. Lett., 1981, 47 : 1542, Bibcode:1981PhRvL..47.1542R , doi:10.1103/PhysRevLett.47.1542
Fröhlich, Jürg; Spencer, Thomas, The Kosterlitz–Thouless transition in two-dimensional abelian spin systems and the Coulomb gas, Comm. Math. Phys., 1981, 81 (4): 527–602, Bibcode:1981CMaPh..81..527F , doi:10.1007/bf01208273
Z. Hadzibabic; et al, Berezinskii–Kosterlitz–Thouless crossover in a trapped atomic gas, Nature, 2006, 41 : 1118, Bibcode:2006Natur.441.1118H , arXiv:cond-mat/0605291 , doi:10.1038/nature04851
相關書籍
J.V. Jose, 40 Years of Berezinskii–Kosterlitz–Thouless Theory , World Scientific, 2013, ISBN 978-981-4417-65-5
H. Kleinert , Gauge Fields in Condensed Matter , Vol. I, " SUPERFLOW AND VORTEX LINES", pp. 1–742, World Scientific (Singapore, 1989) ; Paperback ISBN 9971-5-0210-0 (also available online: Vol. I (页面存档备份 ,存于互联网档案馆 ). Read pp. 618–688);
H. Kleinert , Multivalued Fields in Condensed Matter, Electrodynamics, and Gravitation , World Scientific (Singapore, 2008) (also available online: here (页面存档备份 ,存于互联网档案馆 ))