卡普的二十一個NP-完全問題在計算複雜度理論內,一個極度重要的成就是史提芬·古克在1971年證明出了第一個NP-完全問題— 布爾可滿足性問題。[1]在1972年,理查德·卡普將這個想法往前推進,發表了他著名的論文"Reducibility Among Combinatorial Problems",其內證明了21個不同的,均因為其難解而惡名昭彰的組合數學與圖論問題,是NP-完全問題。[2] 藉由展示出許多研究上面重要的問題是NP-完全問題,卡普促進了研究NP,NP-完備性,以及現在著名的P = NP這些問題。 問題卡普的21個問題列表如下。下列问题加上了缩进排版,以表示出這些問題歸約的方向。例如,精确覆盖问题可以歸約到背包問題(Knapsack),因此背包問題是NP-完全問題。
参见參考資料
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia