卡諾定理 (垂線)![]() 卡諾定理以拉扎爾·卡諾命名,為垂直於三角形各邊的直線是否交於一點提供了一個充分必要條件。該定理也可被視為是畢氏定理的一般化。 定理對於一個三角形,其三邊為。考慮三條垂直於各邊且交於一點的直線,若是這三條垂線在上的垂足,則下列關係式成立: 該命題的逆命題同樣成立:若在邊上的位置滿足關係式,則以這三點為垂足做出的三條垂線會交於一點。因此,該關係式為垂線是否交於一點提供了一個充分必要條件。 特例若三角形的角為直角,則可以將三條垂線的交點置於上。此時由於、 且,可得、、、、與,代入卡諾定理的關係式後,即可推得畢氏定理。 若三條垂線皆為中垂線,則、且,無論三邊長度為何,上述關係式必會成立,故可推得三角形的三條中垂線必交於一點。 參考資料
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia