反函數
![]() 在數學裡,反函數,也称为逆函数(英語:Inverse function),為對一個定函數做逆運算的函數。 定义与存在性設為一函數,其定義域為,陪域為。如果存在一函數,其定義域和陪域分別為,並對任意有 、對任意有,則稱為的反函數,記之為。[註 1] 若一函數有反函數,便稱此函數可逆。一函數可逆的充分必要条件是该函数为双射,即同时为单射和满射。[1] 若為一实函数,还可通過水平線測試判断其是否为单射、满射与双射。 与限制的关系一部分函数尽管本身不可逆,但它到其定义域的某个子集上的限制是可逆的。[2]例如 并不是单射,因和均为。但若取其到上的限制,则这一限制为双射,并拥有反函数 反三角函数是限制定义域的另一个例子。正弦、余弦等三角函数具有周期性,如 这意味着其并非单射。若要定义三角函数的反函数,则需要限定其定义域,如反正弦函数通常定义为正弦函数到上的限制的反函数。这一经过限制的定义域亦是反正弦函数的值域,称作其主值。 性質
注释参考资料
另見 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia