可分空间在数学中,一个拓扑空间被称为可分空间当它包含一个可数的稠密子集,也就是说,存在一个序列,使得此空间中的每个非空的开子集都有这个序列中的至少一个元素。 如可数性公理一样,可分性是一种对空间“大小”的“限制”,虽然这个限制并不一定就是对空间中元素多少的限制(然而在豪斯多夫公理成立的时候这两者是一样的)。特别地,可分空间中的每个连续函数,只要其图像是某个豪斯多夫空间的子集的话,就会被其在某个可数的稠密子集上的取值所确定。 一般来说,对于经典分析学和几何学中的空间来说,可分性是一个很有用的技术性假设,也被认为是比较弱的假设。 例子首先,所有的由有限集或者可数集构成的空间都是可分空间。由不可数集所构成的拓扑空间中,一个可分空间的重要例子是由所有实数组成的实数集空间,因为所有的有理数在其中构成了一个可数的稠密子集。类似地,所有由向量 所构成的空间 也是可分空间,也即是说,所有的有限维欧几里德空间都是可分的。 可分性与第二可数性每个第二可数空间都是可分的: 如果 是一个可数基底,那么只要选择任意一个 就可以得到一个可数并且稠密的子集。反过来说,一个度量空间可分当且仅当它是第二可数的或林德洛夫空间。 参考来源
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia