單位元
單位元(unit element[1])也称恒等元(identity element)、中立元(neutral element)、恒元,是集合裏的一種特殊元素,與該集合裏的二元運算有關。單位元和其他元素結合時,並不會改變那些元素。單位元在群和其他相關概念中都有使用。 設為一帶有一二元運算的集合(稱為原群)。若內有一元素對S內所有元素a满足,則被稱為左單位元;若满足,则稱為右單位元。而若同時為左單位元及右單位元,則稱為雙邊單位元,又簡稱為單位元。 對應加法的單位元稱為加法單位元(通常被標為0),而對應乘法的單位元則稱為乘法單位元(通常被標為1)。這一區分大多被用在有兩個二元運算的集合上,比如環。 例子
如最後一個例子所示,有多個左單位元是可能的,且事實上,每一個元素都可以是左單位元。同樣地,右單位元也一樣。但若同時存在有右單位元和左單位元,則它們會相同,且仅存在一個雙邊單位元。要證明這個,設為左單位元且為右單位元,則。特別的,不存在兩個以上的單位元。若有兩個單位元和,則必同時等於和。 一個代數也可能沒有單位元。最常见的例子為向量的內積和外積。前者缺乏單位元的原因在於,相乘的兩個元素都會是向量,但乘積卻會是個純量。而外積缺乏單位元的原因則在於,任一非零外積的方向必和相乘的兩個向量相正交,因此不可能得出一個和原向量指向同方向的外積向量。 参考另見 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia