图像自动标注图像自动标注是由计算机系统自动通过图片说明或关键词的形式分配元数据给一张数字图像的过程。这个计算机视觉技术的应用被用在图像检索系统来对数据库组织和定位感兴趣的图像。 这种方法可以被看作是一种具有非常大量类别(有词汇量那么大)的多元分类的图像分类问题。通常,提取特征向量和训练标注单词的图像分析使用机器学习技术来尝试对新图像自动标注标签。刚开始的方法学习图像的特征和训练标签之间的相关性,之后技术发展为使用机器翻译尝试翻译带“视觉词汇”的文本词汇,或聚集区域blobs。遵循这些努力的工作包括分类方法、相关模型等。 与基于内容的图像检索相比,自动图像标注的优点是,查询可以由用户更自然地指定[1]。基于内容的图像检索通常(目前)需要用户去通过图像的概念进行搜索,如颜色和纹理,或查找示例查询。在示例图像中的某些图像特征可能会覆盖用户真正关注的概念。图像检索的传统方法,如被库使用的,依赖于手动标注的图像,而这是昂贵和费时的,尤其是给定大量不断增长的图像数据库。 有些标注引擎是在线的,其中包括宾夕法尼亚州立大学研究人员开发的ALIPR.com实时标记引擎和Behold图像搜索。 参见参考文献
外部链接
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia