埃尔德什等差数列猜想埃尔德什等差数列猜想(英語:Erdős conjecture on arithmetic progressions),又称埃尔德什-图兰猜想(英語:Erdős-Turán conjecture),是由兩位匈牙利数学家埃尔德什·帕尔(沃尔夫数学奖得主)与圖蘭·帕爾共同提出的数论猜想,稱倒數和發散的正整數集合中,必有任意長的等差数列。 猜想内容对正整数数列的任意子序列,若:
则:
发展1936年,埃尔德什与好友图兰提出了一个较弱的等差数列猜想,即:具有正密度的自然数子集含有无穷多长度为3的等差数列。[1] 1952年,克劳斯·罗特证明了这个较弱版的猜想。 1975年,塞迈雷迪·安德烈在克劳斯·罗特证明的基础上将这个较弱版本的猜想推广为塞迈雷迪定理。 1976年,埃尔德什在一次纪念好友图兰的演讲中提出了埃尔德什等差数列猜想,并悬赏5000美元给第一个证明此猜想的人。[2] 2004年,本猜想的弱化版本,也是前述塞迈雷迪定理的推广,格林-陶定理被本·格林和陶哲轩证明。[3] 延伸阅读
参考文献
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia