塞瓦定理
![]() ![]() 塞瓦線,或稱為賽瓦線段是各顶点与其对边或对边延长线上的一点连接而成的直线段。塞瓦定理(英語:Ceva's theorem)指出:如果的塞瓦線段 、、 通过同一点,则 它的逆定理同样成立:若、、分别在的边、、或其延长线上(都在边上或有两点在延长线上),且满足
则直线、、共点或彼此平行(於無限遠處共點)。当、、中的任意两直线交于一点時,则三直线共点;当、、中的任意两直线平行时,则三直线平行。 它最先由意大利數學家喬瓦尼·塞瓦證明,因而得名。此定理又譯西瓦定理或帥氏定理。 证明
由等比性质,
推论:角平分線定理在三角形中,的角平分線交於,。 參見
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia