多重线性映射在线性代数中,多重线性映射是有多个向量变量而对每个变量都是线性的函数。 n个变量的多线性映射也叫做n重线性映射。 如果所有变量属于同一个空间,可以考虑对称、反对称和交替的n重线性映射。后两个是一致的,如果底层的环(或域)有不同于二的特征,否则前两个是一致的。 一般讨论可见多重线性代数。 例子在n×n矩阵上多重线性映射可以考虑在有单位元的交换环K上的n×n矩阵上的多重线性函数为矩阵的行(或等价说列)上的函数。设A是这样的矩阵而, 1 ≤ i ≤ n是A的行。则多重线性函数D可以写为
满足
如果我们设表示单位矩阵的第j行,我们用下列方法表示 利用D的多线性我们重写D(A)为 继续这种代换于每个我们得到,对于1 ≤ i ≤ n 所以D(A)是唯一的决定自它如何运算于上。 在2×2矩阵的情况下我们得到
这裡的且。如果我们限制D是交替函数,则且。设我们得到在2×2矩阵上行列式函数:
性质多重线性映射有零值,只要它的一个参数是零。 对于n>1,唯一的也是线性映射的n-线性映射是零函数。 参见 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia