大型语言模型 (LLM) 是一种机器学习模型,专为语言生成等自然语言处理任务而设计。LLM 是具有许多参数的语言模型,并通过对大量文本进行自监督学习进行训练。
本页列出了值得注意的大型语言模型。
对于训练成本一列,1 petaFLOP-day = 1 petaFLOP/sec × 1 天 = 8.64×1019 FLOP。此外,仅列出最大模型的成本。
名称 |
发布日期[a] |
开发者 |
参数量 (十亿) [b] |
语料库大小
|
训练成本 (petaFLOP-day) |
许可证[c] |
注解
|
GPT-1 |
000000002018-06-01-00002018年6月 |
OpenAI |
0.117 !0.117 |
|
1[1] |
MIT[2]
|
首个GPT模型,为仅解码器transformer。 在8个P600GPU上训练了30天。
|
BERT |
000000002018-10-01-00002018年10月 |
Google |
0.340 !0.340[3] |
3300000000 !33亿单词[3]
|
9 !9[4] |
Apache 2.0[5]
|
这是一个早期且有影响力的语言模型。[6] 仅用于编码器,因此并非为提示或生成而构建。[7] 在 64 个 TPUv2 芯片上训练耗时 4 天。[8]
|
T5
|
000000002019-10-01-00002019年10月
|
Google
|
11 !11[9]
|
340亿 tokens[9]
|
|
Apache 2.0[10]
|
许多Google项目的基础模型,例如Imagen。[11]
|
XLNet |
000000002019-06-01-00002019年6月 |
Google |
0.340 !0.340[12] |
3300000000 !330亿单词
|
330 |
Apache 2.0[13]
|
作为BERT的替代,设计为仅编码器 。在512个TPU v3芯片上训练了5.5天。[14]
|
GPT-2 |
000000002019-02-01-00002019年2月 |
OpenAI |
1.5 !1.5[15] |
40 GB[16] (~10000000000 !100亿 tokens)[17]
|
28[18] |
MIT[19]
|
在32个TPU v3芯片上训练了一周。[18]
|
GPT-3 |
000000002020-05-01-00002020年5月 |
OpenAI |
175 !175[20] |
300000000000 !3000亿 tokens[17]
|
3640[21] |
Proprietary
|
A fine-tuned variant of GPT-3, termed GPT-3.5, was made available to the public through a web interface called ChatGPT in 2022.[22]
|
GPT-Neo |
000000002021-03-01-00002021年3月 |
EleutherAI |
2.7 !2.7[23] |
825 GiB[24]
|
|
MIT[25]
|
The first of a series of free GPT-3 alternatives released by EleutherAI. GPT-Neo outperformed an equivalent-size GPT-3 model on some benchmarks, but was significantly worse than the largest GPT-3.[25]
|
GPT-J |
000000002021-06-01-00002021年6月 |
EleutherAI |
6 !6[26] |
825 GiB[24]
|
200[27] |
Apache 2.0
|
GPT-3-style language model
|
Megatron-Turing NLG |
000000002021-10-01-00002021年10月 [28] |
Microsoft and Nvidia |
530 !530[29] |
338600000000 !338.6 billion tokens[29]
|
38000[30] |
Restricted web access
|
Trained for 3 months on over 2000 A100 GPUs on the NVIDIA Selene Supercomputer, for over 3 million GPU-hours.[30]
|
Ernie 3.0 Titan |
000000002021-12-01-00002021年12月 |
Baidu |
260 !260[31] |
4 Tb
|
|
Proprietary
|
Chinese-language LLM. Ernie Bot is based on this model.
|
Claude[32] |
000000002021-12-01-00002021年12月 |
Anthropic |
52 !52[33] |
400000000000 !400 billion tokens[33]
|
|
beta
|
Fine-tuned for desirable behavior in conversations.[34]
|
GLaM (Generalist Language Model) |
000000002021-12-01-00002021年12月 |
Google |
1200 !1200[35] |
1600000000000 !1.6 trillion tokens[35]
|
5600[35] |
Proprietary
|
Sparse mixture of experts model, making it more expensive to train but cheaper to run inference compared to GPT-3.
|
Gopher |
000000002021-12-01-00002021年12月 |
DeepMind |
280 !280[36] |
300000000000 !300 billion tokens[37]
|
5833[38] |
Proprietary
|
Later developed into the Chinchilla model.
|
LaMDA (Language Models for Dialog Applications) |
000000002022-01-01-00002022年1月 |
Google |
137 !137[39] |
1.56T words,[39] 168000000000 !168 billion tokens[37]
|
4110[40] |
Proprietary
|
Specialized for response generation in conversations.
|
GPT-NeoX |
000000002022-02-01-00002022年2月 |
EleutherAI |
20 !20[41] |
825 GiB[24]
|
740[27] |
Apache 2.0
|
based on the Megatron architecture
|
Chinchilla |
000000002022-03-01-00002022年3月 |
DeepMind |
70 !70[42] |
1400000000000 !1.4 trillion tokens[42][37]
|
6805[38] |
Proprietary
|
Reduced-parameter model trained on more data. Used in the Sparrow bot. Often cited for its neural scaling law.
|
PaLM (Pathways Language Model) |
000000002022-04-01-00002022年4月 |
Google |
540 !540[43] |
768000000000 !768 billion tokens[42]
|
29250 !29,250[38] |
Proprietary
|
Trained for ~60 days on ~6000 TPU v4 chips.[38] 截至2024年10月 (2024-10)[update], it is the largest dense Transformer published.
|
OPT (Open Pretrained Transformer) |
000000002022-05-01-00002022年5月 |
Meta |
175 !175[44] |
180000000000 !180 billion tokens[45]
|
310[27] |
Non-commercial research[d]
|
GPT-3 architecture with some adaptations from Megatron. Uniquely, the training logbook written by the team was published.[46]
|
YaLM 100B |
000000002022-06-01-00002022年6月 |
Yandex |
100 !100[47]
|
1.7TB[47] |
|
Apache 2.0 |
English-Russian model based on Microsoft's Megatron-LM.
|
Minerva |
000000002022-06-01-00002022年6月 |
Google |
540 !540[48] |
38.5B tokens from webpages filtered for mathematical content and from papers submitted to the arXiv preprint server[48]
|
|
Proprietary
|
For solving "mathematical and scientific questions using step-by-step reasoning".[49] Initialized from PaLM models, then finetuned on mathematical and scientific data.
|
BLOOM |
000000002022-07-01-00002022年7月 |
Large collaboration led by Hugging Face |
175 !175[50] |
350000000000 !350 billion tokens (1.6TB)[51]
|
|
Responsible AI
|
Essentially GPT-3 but trained on a multi-lingual corpus (30% English excluding programming languages)
|
Galactica |
000000002022-11-01-00002022年11月 |
Meta |
120 !120 |
350000000000 !106 billion tokens[52]
|
未知 |
CC-BY-NC-4.0
|
Trained on scientific text and modalities.
|
AlexaTM (Teacher Models) |
000000002022-11-01-00002022年11月 |
Amazon |
20 !20[53] |
1300000000000 !1.3 trillion[54]
|
|
proprietary[55]
|
bidirectional sequence-to-sequence architecture
|
LLaMA (Large Language Model Meta AI) |
000000002023-02-01-00002023年2月 |
Meta AI |
65 !65[56] |
1400000000000 !1.4 trillion[56]
|
6300[57] |
Non-commercial research[e]
|
Corpus has 20 languages. "Overtrained" (compared to Chinchilla scaling law) for better performance with fewer parameters.[56]
|
GPT-4 |
000000002023-03-01-00002023年3月 |
OpenAI |
未知[f] (According to rumors: 1760)[59]
|
未知
|
未知 |
proprietary
|
Available for ChatGPT Plus users and used in several products.
|
Chameleon |
000000002024-06-01-00002024年6月 |
Meta AI |
34 !34[60] |
4400000000000 !4.4 trillion |
|
|
Cerebras-GPT
|
000000002023-03-01-00002023年3月
|
Cerebras
|
13 !13[61]
|
|
270[27] |
Apache 2.0
|
Trained with Chinchilla formula.
|
Falcon |
000000002023-03-01-00002023年3月 |
Technology Innovation Institute |
40 !40[62] |
1 trillion tokens, from RefinedWeb (filtered web text corpus)[63] plus some "curated corpora".[64]
|
2800[57] |
Apache 2.0[65]
|
|
BloombergGPT |
000000002023-03-01-00002023年3月 |
Bloomberg L.P. |
50 !50 |
363 billion token dataset based on Bloomberg's data sources, plus 345 billion tokens from general purpose datasets[66]
|
|
Proprietary
|
Trained on financial data from proprietary sources, for financial tasks.
|
PanGu-Σ |
000000002023-03-01-00002023年3月 |
Huawei |
1085 !1085 |
329 billion tokens[67]
|
|
Proprietary
|
|
OpenAssistant[68] |
000000002023-03-01-00002023年3月 |
LAION |
17 !17 |
1.5 trillion tokens
|
|
Apache 2.0
|
Trained on crowdsourced open data
|
Jurassic-2[69]
|
000000002023-03-01-00002023年3月
|
AI21 Labs
|
未知
|
未知
|
|
Proprietary
|
Multilingual[70]
|
PaLM 2 (Pathways Language Model 2) |
000000002023-05-01-00002023年5月 |
Google |
340 !340[71] |
3600000000000 !3.6 trillion tokens[71]
|
85000 !85,000[57] |
Proprietary
|
Was used in Bard chatbot.[72]
|
Llama 2 |
000000002023-07-01-00002023年7月 |
Meta AI |
70 !70[73] |
2000000000000 !2 trillion tokens[73]
|
21000 !21,000 |
Llama 2 license
|
1.7 million A100-hours.[74]
|
Claude 2
|
000000002023-07-01-00002023年7月
|
Anthropic
|
未知
|
未知
|
未知 |
Proprietary
|
Used in Claude chatbot.[75]
|
Granite 13b
|
000000002023-07-01-00002023年7月
|
IBM
|
未知
|
未知
|
未知 |
Proprietary
|
Used in IBM Watsonx.[76]
|
Mistral 7B |
000000002023-09-01-00002023年9月 |
Mistral AI |
7.3 !7.3[77] |
未知
|
|
Apache 2.0
|
|
Claude 2.1
|
000000002023-11-01-00002023年11月
|
Anthropic
|
未知
|
未知
|
未知 |
Proprietary
|
Used in Claude chatbot. Has a context window of 200,000 tokens, or ~500 pages.[78]
|
Grok-1[79]
|
000000002023-11-01-00002023年11月
|
xAI
|
314
|
未知
|
未知 |
Apache 2.0
|
Used in Grok chatbot. Grok-1 has a context length of 8,192 tokens and has access to X (Twitter).[80]
|
Gemini 1.0
|
000000002023-12-01-00002023年12月
|
Google DeepMind
|
未知
|
未知
|
未知 |
Proprietary
|
Multimodal model, comes in three sizes. Used in the chatbot of the same name.[81]
|
Mixtral 8x7B
|
000000002023-12-01-00002023年12月
|
Mistral AI
|
46.7
|
未知
|
未知 |
Apache 2.0
|
Outperforms GPT-3.5 and Llama 2 70B on many benchmarks.[82] Mixture of experts model, with 12.9 billion parameters activated per token.[83]
|
Mixtral 8x22B
|
000000002024-04-01-00002024年4月
|
Mistral AI
|
141
|
未知
|
未知 |
Apache 2.0
|
[84]
|
DeepSeek LLM
|
000000002023-11-29-00002023年11月29日
|
DeepSeek
|
67
|
2T tokens[85]
|
12,000}}
|
DeepSeek License
|
Trained on English and Chinese text. 1e24 FLOPs for 67B. 1e23 FLOPs for 7B[85]
|
Phi-2
|
000000002023-12-01-00002023年12月
|
Microsoft
|
2.7
|
1.4T tokens
|
419[86] |
MIT
|
Trained on real and synthetic "textbook-quality" data, for 14 days on 96 A100 GPUs.[86]
|
Gemini 1.5
|
000000002024-02-01-00002024年2月
|
Google DeepMind
|
未知
|
未知
|
未知 |
Proprietary
|
Multimodal model, based on a Mixture-of-Experts (MoE) architecture. Context window above 1 million tokens.[87]
|
Gemini Ultra
|
000000002024-02-01-00002024年2月
|
Google DeepMind
|
未知
|
未知
|
未知 |
|
|
Gemma |
000000002024-02-01-00002024年2月 |
Google DeepMind |
7 |
6T tokens |
未知 |
Gemma Terms of Use[88] |
|
Claude 3
|
000000002024-03-01-00002024年3月
|
Anthropic
|
未知
|
未知
|
未知
|
Proprietary
|
Includes three models, Haiku, Sonnet, and Opus.[89]
|
Nova (页面存档备份,存于互联网档案馆)
|
000000002024-10-01-00002024年10月
|
Rubik's AI (页面存档备份,存于互联网档案馆)
|
未知
|
未知
|
未知
|
Proprietary
|
Includes three models, Nova-Instant, Nova-Air, and Nova-Pro.
|
DBRX
|
000000002024-03-01-00002024年3月
|
Databricks and Mosaic ML
|
136 !136
|
12T Tokens
|
|
Databricks Open Model License
|
Training cost 10 million USD.
|
Fugaku-LLM
|
000000002024-05-01-00002024年5月
|
Fujitsu, Tokyo Institute of Technology, etc.
|
13 !13
|
380B Tokens
|
|
|
The largest model ever trained on CPU-only, on the Fugaku.[90]
|
Phi-3
|
000000002024-04-01-00002024年4月
|
Microsoft
|
14[91]
|
4.8T Tokens
|
|
MIT
|
Microsoft markets them as "small language model".[92]
|
Granite Code Models
|
000000002024-05-01-00002024年5月
|
IBM
|
未知
|
未知
|
未知 |
Apache 2.0
|
|
Qwen2
|
000000002024-06-01-00002024年6月
|
Alibaba Cloud
|
72[93]
|
3T Tokens
|
未知
|
Qwen License
|
Multiple sizes, the smallest being 0.5B.
|
DeepSeek V2
|
000000002024-06-01-00002024年6月
|
DeepSeek
|
236
|
8.1T tokens
|
28000 !28,000
|
DeepSeek License
|
1.4M hours on H800.[94]
|
Nemotron-4
|
000000002024-06-01-00002024年6月
|
Nvidia
|
340 !340
|
9T Tokens
|
200000 !200,000
|
NVIDIA Open Model License
|
Trained for 1 epoch. Trained on 6144 H100 GPUs between December 2023 and May 2024.[95][96]
|
Llama 3.1
|
000000002024-07-01-00002024年7月
|
Meta AI
|
405
|
15.6T tokens
|
440000 !440,000
|
Llama 3 license
|
405B version took 31 million hours on H100-80GB, at 3.8E25 FLOPs.[97][98]
|
DeepSeek V3
|
000000002024-12-01-00002024年12月
|
DeepSeek
|
671
|
14.8T tokens
|
56000 !56,000
|
DeepSeek License
|
2.788M hours on H800 GPUs.[99]
|
Amazon Nova
|
000000002024-12-01-00002024年12月
|
Amazon
|
未知
|
未知
|
未知
|
Proprietary
|
Includes three models, Nova Micro, Nova Lite, and Nova Pro[100]
|
DeepSeek R1
|
000000002025-01-01-00002025年1月
|
DeepSeek
|
671
|
未知
|
未知
|
MIT
|
No pretraining. Reinforcement-learned upon V3-Base.[101][102]
|
Qwen2.5
|
000000002025-01-01-00002025年1月
|
Alibaba
|
72
|
18T tokens
|
未知
|
Qwen License
|
[103]
|
MiniMax-Text-01
|
January 2025
|
Minimax
|
456
|
4.7T tokens[104]
|
未知
|
Minimax Model license
|
[105][104]
|
Gemini 2.0
|
000000002025-02-01-00002025年2月
|
Google DeepMind
|
未知
|
未知
|
未知 |
Proprietary
|
Three models released: Flash, Flash-Lite and Pro[106][107][108]
|
Mistral Large
|
000000002024-11-01-00002024年11月
|
Mistral AI
|
123
|
未知
|
未知
|
Mistral Research License
|
Upgraded over time. The latest version is 24.11.[109]
|
Pixtral
|
000000002024-11-01-00002024年11月
|
Mistral AI
|
123
|
未知
|
未知
|
Mistral Research License
|
Multimodal. There is also a 12B version which is under Apache 2 license.[109]
|
Grok 3
|
000000002025-02-01-00002025年2月
|
xAI
|
未知
|
未知
|
未知, estimated 5,800,000.
|
专有
|
Training cost claimed "10x the compute of previous state-of-the-art models".[110]
|
Llama 4
|
000000002025-04-05-00002025年4月5日
|
Meta AI
|
400 !400
|
40000000000000 !40T tokens
|
|
Llama 4 license
|
[111][112]
|
Qwen3
|
000000002025-04-01-00002025年4月
|
Alibaba Cloud
|
235
|
36000000000000 !36T tokens
|
未知
|
Apache 2.0
|
Multiple sizes, the smallest being 0.6B.[113]
|
参见
注释
- ^ 这是描述模型架构的文档首次发布的日期。
- ^ 在许多情况下,研究人员会发布或报告具有不同尺寸的多个模型版本。在这些情况下,此处会列出最大模型的尺寸。
- ^ 这是预训练模型权重的许可证。在几乎所有情况下,训练代码本身都是开源的或可以轻松复制。
- ^ The smaller models including 66B are publicly available, while the 175B model is available on request.
- ^ Facebook's license and distribution scheme restricted access to approved researchers, but the model weights were leaked and became widely available.
- ^ As stated in Technical report: "Given both the competitive landscape and the safety implications of large-scale models like GPT-4, this report contains no further details about the architecture (including model size), hardware, training compute, dataset construction, training method ..."[58]
参考资料
- ^ Improving language understanding with unsupervised learning. openai.com. June 11, 2018 [2023-03-18]. (原始内容存档于2023-03-18).
- ^ finetune-transformer-lm. GitHub. [2 January 2024]. (原始内容存档于19 May 2023).
- ^ 3.0 3.1 Devlin, Jacob; Chang, Ming-Wei; Lee, Kenton; Toutanova, Kristina. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. 11 October 2018. arXiv:1810.04805v2
[cs.CL].
- ^ Prickett, Nicole Hemsoth. Cerebras Shifts Architecture To Meet Massive AI/ML Models. The Next Platform. 2021-08-24 [2023-06-20]. (原始内容存档于2023-06-20).
- ^ BERT. March 13, 2023 [March 13, 2023]. (原始内容存档于January 13, 2021) –通过GitHub.
- ^ Manning, Christopher D. Human Language Understanding & Reasoning. Daedalus. 2022, 151 (2): 127–138 [2023-03-09]. S2CID 248377870. doi:10.1162/daed_a_01905
. (原始内容存档于2023-11-17).
- ^ Patel, Ajay; Li, Bryan; Rasooli, Mohammad Sadegh; Constant, Noah; Raffel, Colin; Callison-Burch, Chris. Bidirectional Language Models Are Also Few-shot Learners. 2022. arXiv:2209.14500
[cs.LG].
- ^ Devlin, Jacob; Chang, Ming-Wei; Lee, Kenton; Toutanova, Kristina. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. 11 October 2018. arXiv:1810.04805v2
[cs.CL].
- ^ 9.0 9.1 Raffel, Colin; Shazeer, Noam; Roberts, Adam; Lee, Katherine; Narang, Sharan; Matena, Michael; Zhou, Yanqi; Li, Wei; Liu, Peter J. Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. Journal of Machine Learning Research. 2020, 21 (140): 1–67 [2025-02-11]. ISSN 1533-7928. arXiv:1910.10683
. (原始内容存档于2024-10-05).
- ^ google-research/text-to-text-transfer-transformer, Google Research, 2024-04-02 [2024-04-04], (原始内容存档于2024-03-29)
- ^ Imagen: Text-to-Image Diffusion Models. imagen.research.google. [2024-04-04]. (原始内容存档于2024-03-27).
- ^ Pretrained models — transformers 2.0.0 documentation. huggingface.co. [2024-08-05]. (原始内容存档于2024-08-05).
- ^ xlnet. GitHub. [2 January 2024]. (原始内容存档于2 January 2024).
- ^ Yang, Zhilin; Dai, Zihang; Yang, Yiming; Carbonell, Jaime; Salakhutdinov, Ruslan; Le, Quoc V. XLNet: Generalized Autoregressive Pretraining for Language Understanding. 2 January 2020. arXiv:1906.08237
[cs.CL].
- ^ GPT-2: 1.5B Release. OpenAI. 2019-11-05 [2019-11-14]. (原始内容存档于2019-11-14) (英语).
- ^ Better language models and their implications. openai.com. [2023-03-13]. (原始内容存档于2023-03-16).
- ^ 17.0 17.1 OpenAI's GPT-3 Language Model: A Technical Overview. lambdalabs.com. 3 June 2020 [13 March 2023]. (原始内容存档于27 March 2023).
- ^ 18.0 18.1 openai-community/gpt2-xl · Hugging Face. huggingface.co. [2024-07-24]. (原始内容存档于2024-07-24).
- ^ gpt-2. GitHub. [13 March 2023]. (原始内容存档于11 March 2023).
- ^ Wiggers, Kyle. The emerging types of language models and why they matter. TechCrunch. 28 April 2022 [9 March 2023]. (原始内容存档于16 March 2023).
- ^ Table D.1 in Brown, Tom B.; Mann, Benjamin; Ryder, Nick; Subbiah, Melanie; Kaplan, Jared; Dhariwal, Prafulla; Neelakantan, Arvind; Shyam, Pranav; Sastry, Girish; Askell, Amanda; Agarwal, Sandhini; Herbert-Voss, Ariel; Krueger, Gretchen; Henighan, Tom; Child, Rewon; Ramesh, Aditya; Ziegler, Daniel M.; Wu, Jeffrey; Winter, Clemens; Hesse, Christopher; Chen, Mark; Sigler, Eric; Litwin, Mateusz; Gray, Scott; Chess, Benjamin; Clark, Jack; Berner, Christopher; McCandlish, Sam; Radford, Alec; Sutskever, Ilya; Amodei, Dario. Language Models are Few-Shot Learners. May 28, 2020. arXiv:2005.14165v4
[cs.CL].
- ^ ChatGPT: Optimizing Language Models for Dialogue. OpenAI. 2022-11-30 [2023-01-13]. (原始内容存档于2022-11-30).
- ^ GPT Neo. March 15, 2023 [March 12, 2023]. (原始内容存档于March 12, 2023) –通过GitHub.
- ^ 24.0 24.1 24.2 Gao, Leo; Biderman, Stella; Black, Sid; Golding, Laurence; Hoppe, Travis; Foster, Charles; Phang, Jason; He, Horace; Thite, Anish; Nabeshima, Noa; Presser, Shawn; Leahy, Connor. The Pile: An 800GB Dataset of Diverse Text for Language Modeling. 31 December 2020. arXiv:2101.00027
[cs.CL].
- ^ 25.0 25.1 Iyer, Abhishek. GPT-3's free alternative GPT-Neo is something to be excited about. VentureBeat. 15 May 2021 [13 March 2023]. (原始内容存档于9 March 2023).
- ^ GPT-J-6B: An Introduction to the Largest Open Source GPT Model | Forefront. www.forefront.ai. [2023-02-28]. (原始内容存档于2023-03-09).
- ^ 27.0 27.1 27.2 27.3 Dey, Nolan; Gosal, Gurpreet; Zhiming; Chen; Khachane, Hemant; Marshall, William; Pathria, Ribhu; Tom, Marvin; Hestness, Joel. Cerebras-GPT: Open Compute-Optimal Language Models Trained on the Cerebras Wafer-Scale Cluster. 2023-04-01. arXiv:2304.03208
[cs.LG].
- ^ Alvi, Ali; Kharya, Paresh. Using DeepSpeed and Megatron to Train Megatron-Turing NLG 530B, the World's Largest and Most Powerful Generative Language Model. Microsoft Research. 11 October 2021 [13 March 2023]. (原始内容存档于13 March 2023).
- ^ 29.0 29.1 Smith, Shaden; Patwary, Mostofa; Norick, Brandon; LeGresley, Patrick; Rajbhandari, Samyam; Casper, Jared; Liu, Zhun; Prabhumoye, Shrimai; Zerveas, George; Korthikanti, Vijay; Zhang, Elton; Child, Rewon; Aminabadi, Reza Yazdani; Bernauer, Julie; Song, Xia. Using DeepSpeed and Megatron to Train Megatron-Turing NLG 530B, A Large-Scale Generative Language Model. 2022-02-04. arXiv:2201.11990
[cs.CL].
- ^ 30.0 30.1 Rajbhandari, Samyam; Li, Conglong; Yao, Zhewei; Zhang, Minjia; Aminabadi, Reza Yazdani; Awan, Ammar Ahmad; Rasley, Jeff; He, Yuxiong, DeepSpeed-MoE: Advancing Mixture-of-Experts Inference and Training to Power Next-Generation AI Scale, 2022-07-21, arXiv:2201.05596
- ^ Wang, Shuohuan; Sun, Yu; Xiang, Yang; Wu, Zhihua; Ding, Siyu; Gong, Weibao; Feng, Shikun; Shang, Junyuan; Zhao, Yanbin; Pang, Chao; Liu, Jiaxiang; Chen, Xuyi; Lu, Yuxiang; Liu, Weixin; Wang, Xi; Bai, Yangfan; Chen, Qiuliang; Zhao, Li; Li, Shiyong; Sun, Peng; Yu, Dianhai; Ma, Yanjun; Tian, Hao; Wu, Hua; Wu, Tian; Zeng, Wei; Li, Ge; Gao, Wen; Wang, Haifeng. ERNIE 3.0 Titan: Exploring Larger-scale Knowledge Enhanced Pre-training for Language Understanding and Generation. December 23, 2021. arXiv:2112.12731
[cs.CL].
- ^ Product. Anthropic. [14 March 2023]. (原始内容存档于16 March 2023).
- ^ 33.0 33.1 Askell, Amanda; Bai, Yuntao; Chen, Anna; et al. A General Language Assistant as a Laboratory for Alignment. 9 December 2021. arXiv:2112.00861
[cs.CL].
- ^ Bai, Yuntao; Kadavath, Saurav; Kundu, Sandipan; et al. Constitutional AI: Harmlessness from AI Feedback. 15 December 2022. arXiv:2212.08073
[cs.CL].
- ^ 35.0 35.1 35.2 Dai, Andrew M; Du, Nan. More Efficient In-Context Learning with GLaM. ai.googleblog.com. December 9, 2021 [2023-03-09]. (原始内容存档于2023-03-12).
- ^ Language modelling at scale: Gopher, ethical considerations, and retrieval. www.deepmind.com. 8 December 2021 [20 March 2023]. (原始内容存档于20 March 2023).
- ^ 37.0 37.1 37.2 Hoffmann, Jordan; Borgeaud, Sebastian; Mensch, Arthur; et al. Training Compute-Optimal Large Language Models. 29 March 2022. arXiv:2203.15556
[cs.CL].
- ^ 38.0 38.1 38.2 38.3 Table 20 and page 66 of PaLM: Scaling Language Modeling with Pathways 互联网档案馆的存檔,存档日期2023-06-10.
- ^ 39.0 39.1 Cheng, Heng-Tze; Thoppilan, Romal. LaMDA: Towards Safe, Grounded, and High-Quality Dialog Models for Everything. ai.googleblog.com. January 21, 2022 [2023-03-09]. (原始内容存档于2022-03-25).
- ^ Thoppilan, Romal; De Freitas, Daniel; Hall, Jamie; Shazeer, Noam; Kulshreshtha, Apoorv; Cheng, Heng-Tze; Jin, Alicia; Bos, Taylor; Baker, Leslie; Du, Yu; Li, YaGuang; Lee, Hongrae; Zheng, Huaixiu Steven; Ghafouri, Amin; Menegali, Marcelo. LaMDA: Language Models for Dialog Applications. 2022-01-01. arXiv:2201.08239
[cs.CL].
- ^ Black, Sidney; Biderman, Stella; Hallahan, Eric; et al. GPT-NeoX-20B: An Open-Source Autoregressive Language Model. Proceedings of BigScience Episode #5 – Workshop on Challenges & Perspectives in Creating Large Language Models. Proceedings of BigScience Episode #5 – Workshop on Challenges & Perspectives in Creating Large Language Models: 95–136. 2022-05-01 [2022-12-19]. (原始内容存档于2022-12-10).
- ^ 42.0 42.1 42.2 Hoffmann, Jordan; Borgeaud, Sebastian; Mensch, Arthur; Sifre, Laurent. An empirical analysis of compute-optimal large language model training. Deepmind Blog. 12 April 2022 [9 March 2023]. (原始内容存档于13 April 2022).
- ^ Narang, Sharan; Chowdhery, Aakanksha. Pathways Language Model (PaLM): Scaling to 540 Billion Parameters for Breakthrough Performance. ai.googleblog.com. April 4, 2022 [2023-03-09]. (原始内容存档于2022-04-04) (英语).
- ^ Susan Zhang; Mona Diab; Luke Zettlemoyer. Democratizing access to large-scale language models with OPT-175B. ai.facebook.com. [2023-03-12]. (原始内容存档于2023-03-12).
- ^ Zhang, Susan; Roller, Stephen; Goyal, Naman; Artetxe, Mikel; Chen, Moya; Chen, Shuohui; Dewan, Christopher; Diab, Mona; Li, Xian; Lin, Xi Victoria; Mihaylov, Todor; Ott, Myle; Shleifer, Sam; Shuster, Kurt; Simig, Daniel; Koura, Punit Singh; Sridhar, Anjali; Wang, Tianlu; Zettlemoyer, Luke. OPT: Open Pre-trained Transformer Language Models. 21 June 2022. arXiv:2205.01068
[cs.CL].
- ^ metaseq/projects/OPT/chronicles at main · facebookresearch/metaseq. GitHub. [2024-10-18]. (原始内容存档于2024-01-24) (英语).
- ^ 47.0 47.1 Khrushchev, Mikhail; Vasilev, Ruslan; Petrov, Alexey; Zinov, Nikolay, YaLM 100B, 2022-06-22 [2023-03-18], (原始内容存档于2023-06-16)
- ^ 48.0 48.1 Lewkowycz, Aitor; Andreassen, Anders; Dohan, David; Dyer, Ethan; Michalewski, Henryk; Ramasesh, Vinay; Slone, Ambrose; Anil, Cem; Schlag, Imanol; Gutman-Solo, Theo; Wu, Yuhuai; Neyshabur, Behnam; Gur-Ari, Guy; Misra, Vedant. Solving Quantitative Reasoning Problems with Language Models. 30 June 2022. arXiv:2206.14858
[cs.CL].
- ^ Minerva: Solving Quantitative Reasoning Problems with Language Models. ai.googleblog.com. 30 June 2022 [20 March 2023]. (原始内容存档于2022-06-30).
- ^ Ananthaswamy, Anil. In AI, is bigger always better?. Nature. 8 March 2023, 615 (7951): 202–205 [9 March 2023]. Bibcode:2023Natur.615..202A. PMID 36890378. S2CID 257380916. doi:10.1038/d41586-023-00641-w. (原始内容存档于16 March 2023).
- ^ bigscience/bloom · Hugging Face. huggingface.co. [2023-03-13]. (原始内容存档于2023-04-12).
- ^ Taylor, Ross; Kardas, Marcin; Cucurull, Guillem; Scialom, Thomas; Hartshorn, Anthony; Saravia, Elvis; Poulton, Andrew; Kerkez, Viktor; Stojnic, Robert. Galactica: A Large Language Model for Science. 16 November 2022. arXiv:2211.09085
[cs.CL].
- ^ 20B-parameter Alexa model sets new marks in few-shot learning. Amazon Science. 2 August 2022 [12 March 2023]. (原始内容存档于15 March 2023).
- ^ Soltan, Saleh; Ananthakrishnan, Shankar; FitzGerald, Jack; et al. AlexaTM 20B: Few-Shot Learning Using a Large-Scale Multilingual Seq2Seq Model. 3 August 2022. arXiv:2208.01448
[cs.CL].
- ^ AlexaTM 20B is now available in Amazon SageMaker JumpStart | AWS Machine Learning Blog. aws.amazon.com. 17 November 2022 [13 March 2023]. (原始内容存档于13 March 2023).
- ^ 56.0 56.1 56.2 Introducing LLaMA: A foundational, 65-billion-parameter large language model. Meta AI. 24 February 2023 [9 March 2023]. (原始内容存档于3 March 2023).
- ^ 57.0 57.1 57.2 The Falcon has landed in the Hugging Face ecosystem. huggingface.co. [2023-06-20]. (原始内容存档于2023-06-20).
- ^ GPT-4 Technical Report (PDF). OpenAI. 2023 [March 14, 2023]. (原始内容存档 (PDF)于March 14, 2023).
- ^ Schreiner, Maximilian. GPT-4 architecture, datasets, costs and more leaked. THE DECODER. 2023-07-11 [2024-07-26]. (原始内容存档于2023-07-12) (美国英语).
- ^ Dickson, Ben. Meta introduces Chameleon, a state-of-the-art multimodal model. VentureBeat. 22 May 2024 [2025-02-11]. (原始内容存档于2025-02-11).
- ^ Dey, Nolan. Cerebras-GPT: A Family of Open, Compute-efficient, Large Language Models. Cerebras. March 28, 2023 [March 28, 2023]. (原始内容存档于March 28, 2023).
- ^ Abu Dhabi-based TII launches its own version of ChatGPT. tii.ae. [2023-04-03]. (原始内容存档于2023-04-03).
- ^ Penedo, Guilherme; Malartic, Quentin; Hesslow, Daniel; Cojocaru, Ruxandra; Cappelli, Alessandro; Alobeidli, Hamza; Pannier, Baptiste; Almazrouei, Ebtesam; Launay, Julien. The RefinedWeb Dataset for Falcon LLM: Outperforming Curated Corpora with Web Data, and Web Data Only. 2023-06-01. arXiv:2306.01116
[cs.CL].
- ^ tiiuae/falcon-40b · Hugging Face. huggingface.co. 2023-06-09 [2023-06-20]. (原始内容存档于2023-06-02).
- ^ UAE's Falcon 40B, World's Top-Ranked AI Model from Technology Innovation Institute, is Now Royalty-Free 互联网档案馆的存檔,存档日期2024-02-08., 31 May 2023
- ^ Wu, Shijie; Irsoy, Ozan; Lu, Steven; Dabravolski, Vadim; Dredze, Mark; Gehrmann, Sebastian; Kambadur, Prabhanjan; Rosenberg, David; Mann, Gideon. BloombergGPT: A Large Language Model for Finance. March 30, 2023. arXiv:2303.17564
[cs.LG].
- ^ Ren, Xiaozhe; Zhou, Pingyi; Meng, Xinfan; Huang, Xinjing; Wang, Yadao; Wang, Weichao; Li, Pengfei; Zhang, Xiaoda; Podolskiy, Alexander; Arshinov, Grigory; Bout, Andrey; Piontkovskaya, Irina; Wei, Jiansheng; Jiang, Xin; Su, Teng; Liu, Qun; Yao, Jun. PanGu-Σ: Towards Trillion Parameter Language Model with Sparse Heterogeneous Computing. March 19, 2023. arXiv:2303.10845
[cs.CL].
- ^ Köpf, Andreas; Kilcher, Yannic; von Rütte, Dimitri; Anagnostidis, Sotiris; Tam, Zhi-Rui; Stevens, Keith; Barhoum, Abdullah; Duc, Nguyen Minh; Stanley, Oliver; Nagyfi, Richárd; ES, Shahul; Suri, Sameer; Glushkov, David; Dantuluri, Arnav; Maguire, Andrew. OpenAssistant Conversations – Democratizing Large Language Model Alignment. 2023-04-14. arXiv:2304.07327
[cs.CL].
- ^ Wrobel, Sharon. Tel Aviv startup rolls out new advanced AI language model to rival OpenAI. www.timesofisrael.com. [2023-07-24]. (原始内容存档于2023-07-24).
- ^ Wiggers, Kyle. With Bedrock, Amazon enters the generative AI race. TechCrunch. 2023-04-13 [2023-07-24]. (原始内容存档于2023-07-24).
- ^ 71.0 71.1 Elias, Jennifer. Google's newest A.I. model uses nearly five times more text data for training than its predecessor. CNBC. 16 May 2023 [18 May 2023]. (原始内容存档于16 May 2023).
- ^ Introducing PaLM 2. Google. May 10, 2023 [May 18, 2023]. (原始内容存档于May 18, 2023).
- ^ 73.0 73.1 Introducing Llama 2: The Next Generation of Our Open Source Large Language Model. Meta AI. 2023 [2023-07-19]. (原始内容存档于2024-01-05).
- ^ llama/MODEL_CARD.md at main · meta-llama/llama. GitHub. [2024-05-28]. (原始内容存档于2024-05-28).
- ^ Claude 2. anthropic.com. [12 December 2023]. (原始内容存档于15 December 2023).
- ^ Nirmal, Dinesh. Building AI for business: IBM's Granite foundation models. IBM Blog. 2023-09-07 [2024-08-11]. (原始内容存档于2024-07-22) (美国英语).
- ^ Announcing Mistral 7B. Mistral. 2023 [2023-10-06]. (原始内容存档于2024-01-06).
- ^ Introducing Claude 2.1. anthropic.com. [12 December 2023]. (原始内容存档于15 December 2023).
- ^ xai-org/grok-1, xai-org, 2024-03-19 [2024-03-19], (原始内容存档于2024-05-28)
- ^ Grok-1 model card. x.ai. [12 December 2023]. (原始内容存档于2023-11-05).
- ^ Gemini – Google DeepMind. deepmind.google. [12 December 2023]. (原始内容存档于8 December 2023).
- ^ Franzen, Carl. Mistral shocks AI community as latest open source model eclipses GPT-3.5 performance. VentureBeat. 11 December 2023 [12 December 2023]. (原始内容存档于11 December 2023).
- ^ Mixtral of experts. mistral.ai. 11 December 2023 [12 December 2023]. (原始内容存档于13 February 2024).
- ^ AI, Mistral. Cheaper, Better, Faster, Stronger. mistral.ai. 2024-04-17 [2024-05-05]. (原始内容存档于2024-05-05).
- ^ 85.0 85.1 DeepSeek-AI; Bi, Xiao; Chen, Deli; Chen, Guanting; Chen, Shanhuang; Dai, Damai; Deng, Chengqi; Ding, Honghui; Dong, Kai, DeepSeek LLM: Scaling Open-Source Language Models with Longtermism, 2024-01-05 [2025-02-11], arXiv:2401.02954
, (原始内容存档于2025-03-29)
- ^ 86.0 86.1 Hughes, Alyssa. Phi-2: The surprising power of small language models. Microsoft Research. 12 December 2023 [13 December 2023]. (原始内容存档于12 December 2023).
- ^ Our next-generation model: Gemini 1.5. Google. 15 February 2024 [16 February 2024]. (原始内容存档于16 February 2024).
This means 1.5 Pro can process vast amounts of information in one go — including 1 hour of video, 11 hours of audio, codebases with over 30,000 lines of code or over 700,000 words. In our research, we’ve also successfully tested up to 10 million tokens.
- ^ Gemma. [2025-02-11]. (原始内容存档于2024-02-21) –通过GitHub.
- ^ Introducing the next generation of Claude. www.anthropic.com. [2024-03-04]. (原始内容存档于2024-03-04).
- ^ Fugaku-LLM/Fugaku-LLM-13B · Hugging Face. huggingface.co. [2024-05-17]. (原始内容存档于2024-05-17).
- ^ Phi-3. azure.microsoft.com. 23 April 2024 [2024-04-28]. (原始内容存档于2024-04-27).
- ^ Phi-3 Model Documentation. huggingface.co. [2024-04-28]. (原始内容存档于2024-05-13).
- ^ Qwen2. GitHub. [2024-06-17]. (原始内容存档于2024-06-17).
- ^ DeepSeek-AI; Liu, Aixin; Feng, Bei; Wang, Bin; Wang, Bingxuan; Liu, Bo; Zhao, Chenggang; Dengr, Chengqi; Ruan, Chong, DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model, 2024-06-19 [2025-02-11], arXiv:2405.04434
, (原始内容存档于2025-03-30)
- ^ nvidia/Nemotron-4-340B-Base · Hugging Face. huggingface.co. 2024-06-14 [2024-06-15]. (原始内容存档于2024-06-15).
- ^ Nemotron-4 340B | Research. research.nvidia.com. [2024-06-15]. (原始内容存档于2024-06-15).
- ^ "The Llama 3 Herd of Models" (July 23, 2024) Llama Team, AI @ Meta. [2025-02-11]. (原始内容存档于2024-07-24).
- ^ llama-models/models/llama3_1/MODEL_CARD.md at main · meta-llama/llama-models. GitHub. [2024-07-23]. (原始内容存档于2024-07-23) (英语).
- ^ deepseek-ai/DeepSeek-V3, DeepSeek, 2024-12-26 [2024-12-26], (原始内容存档于2025-03-27)
- ^ Amazon Nova Micro, Lite, and Pro - AWS AI Service Cards3, Amazon, 2024-12-27 [2024-12-27], (原始内容存档于2025-02-11)
- ^ deepseek-ai/DeepSeek-R1, DeepSeek, 2025-01-21 [2025-01-21], (原始内容存档于2025-02-04)
- ^ DeepSeek-AI; Guo, Daya; Yang, Dejian; Zhang, Haowei; Song, Junxiao; Zhang, Ruoyu; Xu, Runxin; Zhu, Qihao; Ma, Shirong, DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning, 2025-01-22 [2025-02-11], arXiv:2501.12948
, (原始内容存档于2025-04-09)
- ^ Qwen; Yang, An; Yang, Baosong; Zhang, Beichen; Hui, Binyuan; Zheng, Bo; Yu, Bowen; Li, Chengyuan; Liu, Dayiheng, Qwen2.5 Technical Report, 2025-01-03 [2025-02-11], arXiv:2412.15115
, (原始内容存档于2025-04-01)
- ^ 104.0 104.1 MiniMax; Li, Aonian; Gong, Bangwei; Yang, Bo; Shan, Boji; Liu, Chang; Zhu, Cheng; Zhang, Chunhao; Guo, Congchao, MiniMax-01: Scaling Foundation Models with Lightning Attention, 2025-01-14 [2025-01-26], arXiv:2501.08313
, (原始内容存档于2025-03-22)
- ^ MiniMax-AI/MiniMax-01, MiniMax, 2025-01-26 [2025-01-26]
- ^ Kavukcuoglu, Koray. Gemini 2.0 is now available to everyone. Google. [6 February 2025]. (原始内容存档于2025-04-10).
- ^ Gemini 2.0: Flash, Flash-Lite and Pro. Google for Developers. [6 February 2025]. (原始内容存档于2025-04-10).
- ^ Franzen, Carl. Google launches Gemini 2.0 Pro, Flash-Lite and connects reasoning model Flash Thinking to YouTube, Maps and Search. VentureBeat. 5 February 2025 [6 February 2025]. (原始内容存档于2025-03-17).
- ^ 109.0 109.1 Models Overview. mistral.ai. [2025-03-03].
- ^ Grok 3 Beta — The Age of Reasoning Agents. x.ai. [2025-02-22] (英语).
- ^ meta-llama/Llama-4-Maverick-17B-128E · Hugging Face. huggingface.co. 2025-04-05 [2025-04-06].
- ^ The Llama 4 herd: The beginning of a new era of natively multimodal AI innovation. ai.meta.com. [2025-04-05]. (原始内容存档于2025-04-05) (英语).
- ^ Team, Qwen. Qwen3: Think Deeper, Act Faster. Qwen. 2025-04-29 [2025-04-29] (英语).
|