布豐投針問題
![]() 布豐投針問題(法語:Aiguille de Buffon,又译“蒲丰投針問題”),是法國學者布丰於18世紀提出的一個数学問題:[1]
使用積分幾何能找到此題的解。用該方法可設計一個求π的蒙地卡羅方法,不過這並非布豐的本意。[2] 解法設針的長度是,平行線之間的距離為,為針的中心和最近的平行線的距離,為針和線之間的銳角。 且均匀分布,其機率密度函數為。 兩個隨機變數互相獨立,因此兩者結合的機率密度函數只是兩者的積: 當,針和線相交,然後對積分得出所求機率。 要求上式的積分需要分為兩種情況:“短針”以及“長針”;以下考慮“短針”情況,計算上式積分得針與線相交的機率: 作簡單變換可得, 當拋支針,其中有支針與線相交,利用多次重複試驗所觀察事件發生的頻率越來越接近機率的理論值。 近似可得 拉扎里尼的估計1901年,意大利數學家马里奥·拉扎里尼(Mario Lazzarini)嘗試進行此實驗。他拋了3408次針,得到π的近似值為355/113。 拉扎里尼選取了一支長度是紋的距離的5/6的針。在這個情況,針和紋相交的機會是5/(3π)。如果想拋n次針而得到x次相交,π約等於。分母、分子少於五位數字,沒有比355/113更好的π的近似值了。因此,可以列式,得。 為求x的值接近這個數,可以重覆拋213次針,若有113次是成功的,便可終止實驗,宣布這個方法求π值準確度不低;否則,就再拋213次針,希望共有226次成功……這次反覆進行實驗。拉扎里尼做了次。 參見參考文獻
外部連結
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia