幸福結局問題
![]() 幸福結局問題(由保羅·艾狄胥命名,因為這個問題令喬治·塞凱賴什和愛絲特·克萊共諧連理)是問,在平面上,給定一般位置(即平面上任意三點不共線)上的多少點,才令其中必可以找到點能組成凸邊形? 1935年,艾狄胥和塞凱賴什證明:給定任意正整數,存在正整數使得給定在平面上一般位置上的點,其中必可以找到點能組成凸邊形。 將表示為的最小可能值,已知
1961年,艾狄胥和塞凱賴什證明 [2]。 1998年,一连三篇关于对的上界的文章被发表,其中最好的结果是由Tóth和Valtr找到的: 2005年,他们进一步将此上界降低了1: 2016年,Andrew Suk證明了: 參考
註解
外部連結
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia