截角大星形十二面體
在幾何學中,截角大星形十二面體又稱小複雜截半二十面體(small complex icosidodecahedron)是一種退化的星形均勻多面體,由於其可以視為截角的大星形十二面體或過截角的大二十面體,其截角產生的稜兩兩互相重合,外觀與正二十面體無異,但其有12個五邊形面隱沒在立體內部,通常需要藉由讓三角形面變透明才能看出整個立體的構造[2]。 ![]() 性質小複雜截半二十面體由12個五邊形和20個正三角形組成,其共有32個面、60條邊和12個頂點,若不計重合的邊,則會導致立體中的每條稜都是四個面的公共稜[3]。這種立體是均勻多面體的一種退化形式,在考克斯特的書中,這種形式被以威佐夫記號5 | 3/2 5。[1] 作為複合多面體小複雜截半二十面體可以視為正二十面體和大十二面體的複合多面體,由於正二十面體和大十二面體其頂點和邊可以互相共用 [4],其組成成的複合體也稱為小複雜截半二十面體[5][6]
作為截角多面體均勻截角即為一般用於產生半正多面體(如阿基米德立體)所用的截角變換[7][註 1],其結果在考克斯特記號中可以用 相關多面體
與小複雜截半二十面體可以視為截角的大星形十二面體,與之類似的退化星形均勻多面體為另一個由星形正多面體截角的結果,其為截角小星形十二面體。[12]
小複雜截半二十面體由12個五邊形和20個正三角形組成,另一種也是由12個五邊形和20個正三角形組成立體為截半二十面体。[13] 參見註釋參考文獻
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia