扫描透射电子显微镜(英語:Scanning transmission electron microscope;縮寫為STEM)是利用电磁透镜把电子束会聚成非常小的束斑在薄样品上进行逐点扫描,并利用探测器收集透过样品的散射电子进行成像的一种显微镜技术。其为透射电子显微镜(TEM)的一种,与传统TEM的区别在于STEM的电子束被汇聚得非常细(束斑大小一般为0.05-0.2 nm)[1],然后该光斑在光栅照明系统下扫描样品,使得样品在每个点都被平行于光轴的光束照亮。因此可与环形暗场成像(ADF)、能量色散X射线光谱(EDX)或电子能量损失谱(EELS)等分析技术进行联用[2][3]。
世界首台STEM由德国西门子的曼弗雷德·冯·阿登纳(Manfred von Ardenne)于1938年发明[6][7] ,但这台STEM的成像效果不及当时的透射电子显微镜 (TEM),而且阿登纳仅用了两年来处理这个问题,之后不了了之。这台STEM于1944年二战期间被空袭炸毁,然而二战结束后阿登纳再也没有回到西门子继续工作[8]。STEM的发展陷入停滞。
^E. M. James,N. D. Browning, A. W. Nicholls,; et al. Demonstration of atomic resolution Z-contrast imaging by a JEOL JEM-2010F scanning transmission electron microscope. Microscopy. 1998, 47 (6): 561-574. doi:10.1093/oxfordjournals.jmicro.a023629. 引文格式1维护:显式使用等标签 (link)
^Muller, D.A.; Grazul, J. Optimizing the environment for sub-0.2 nm scanning transmission electron microscopy. Journal of Electron Microscopy. 2001, 50 (3): 219–226. PMID 11469410. doi:10.1093/jmicro/50.3.219.
^Dellby, N.; Krivanek, O. L.; Nellist, P. D.; Batson, P. E.; Lupini, A. R. Progress in aberration-corrected scanning transmission electron microscopy. Microscopy. 2001, 50 (3): 177–185. PMID 11469406. doi:10.1093/jmicro/50.3.177.
^Kisielowski, C.; Freitag, B.; Bischoff, M.; et al. Detection of Single Atoms and Buried Defects in Three Dimensions by Aberration-Corrected Electron Microscope with 0.5-Å Information Limit. Microscopy and Microanalysis. 2008, 14 (5): 469–477. Bibcode:2008MiMic..14..469K. PMID 18793491. S2CID 12689183. doi:10.1017/S1431927608080902. 引文格式1维护:显式使用等标签 (link)
^Findlay, S.D.; Shibata, N.; Sawada, H.; Okunishi, E.; Kondo, Y.; Ikuhara, Y. Dynamics of annular bright field imaging in scanning transmission electron microscopy. Ultramicroscopy. 2010, 32 (7): 903–923. PMID 20434265. doi:10.1016/j.ultramic.2010.04.004.
^S.D. Findlay, N. Shibata, H. Sawada; et al. Dynamics of annular bright field imaging in scanning transmission electron microscopy. Ultramicroscopy. 2010, 110 (7): 903-923. doi:10.1016/j.ultramic.2010.04.004(英语). 引文格式1维护:显式使用等标签 (link)
^ 20.020.120.220.3Krajnak, Matus; McGrouther, Damien; Maneuski, Dzmitry; Shea, Val O'; McVitie, Stephen. Pixelated detectors and improved efficiency for magnetic imaging in STEM differential phase contrast. Ultramicroscopy. June 2016, 165: 42–50. PMID 27085170. doi:10.1016/j.ultramic.2016.03.006.
^Haas, Benedikt; Rouvière, Jean-Luc; Boureau, Victor; Berthier, Remy; Cooper, David. Direct comparison of off-axis holography and differential phase contrast for the mapping of electric fields in semiconductors by transmission electron microscopy.. Ultramicroscopy. March 2019, 198: 58–72. PMID 30660032. S2CID 58636157. doi:10.1016/j.ultramic.2018.12.003.
^Chapman, J N. The investigation of magnetic domain structures in thin foils by electron microscopy. Journal of Physics D: Applied Physics. 14 April 1984, 17 (4): 623–647. S2CID 250805904. doi:10.1088/0022-3727/17/4/003.
^Ciston, Jim; Ophus, Colin; Ercius, Peter; Yang, Hao; Dos Reis, Roberto; Nelson, Christopher T.; Hsu, Shang-Lin; Gammer, Christoph; Özdöl, Burak V.; Deng, Yu; Minor, Andrew. Multimodal Acquisition of Properties and Structure with Transmission Electron Reciprocal-space (MAPSTER) Microscopy. Microscopy and Microanalysis. 2016, 22(S3) (S3): 1412–1413. Bibcode:2016MiMic..22S1412C. doi:10.1017/S143192761600790X.
^Egerton,R.F. (编). Electron Energy-Loss Spectroscopy in the Electron Microscope. Springer. 2011. ISBN 978-1-4419-9582-7.
^Mundy, Julia A.; Hikita, Yasuyuki; Hidaka, Takeaki; Yajima, Takeaki; Higuchi, Takuya; Hwang, Harold Y.; Muller, David A.; Kourkoutis, Lena F. Visualizing the interfacial evolution from charge compensation to metallic screening across the manganite metal–insulator transition. Nature Communications. 2014, 5: 3464. Bibcode:2014NatCo...5.3464M. PMID 24632721. doi:10.1038/ncomms4464.
^Krivanek, Ondrej L.; Lovejoy, Tracy C.; Dellby, Niklas; Aoki, Toshihiro; Carpenter, R. W.; Rez, Peter; Soignard, Emmanuel; Zhu, Jiangtao; Batson, Philip E.; Lagos, Maureen J.; Egerton, Ray F.; Crozier, Peter A. Vibrational spectroscopy in the electron microscope. Nature. 2016, 514 (7521): 209–212. Bibcode:2014Natur.514..209K. PMID 25297434. S2CID 4467249. doi:10.1038/nature13870.
^Zachman, Michael J.; Asenath-Smith, Emily; Estroff, Lara A.; Kourkoutis, Lena F. Site-Specific Preparation of Intact Solid–Liquid Interfaces by Label-Free In Situ Localization and Cryo-Focused Ion Beam Lift-Out. Microscopy and Microanalysis. 2016, 22 (6): 1338–1349. Bibcode:2016MiMic..22.1338Z. PMID 27869059. S2CID 25314940. doi:10.1017/S1431927616011892.
^Boyes, Edward D.; Ward, Michael R.; Lari, Leonardo; Gai, Pratibha L. ESTEM imaging of single atoms under controlled temperature and gas environment conditions in catalyst reaction studies. Annalen der Physik. 2013, 525 (6): 423–429. Bibcode:2013AnP...525..423B. S2CID 119973907. doi:10.1002/andp.201300068.
^Ievlev, Anton V.; Jesse, Stephen; Cochell, Thomas J.; Unocic, Raymond R.; Protopopescu, Vladimir A.; Kalinin, Sergei V. Quantitative Description of Crystal Nucleation and Growth from in Situ Liquid Scanning Transmission Electron Microscopy. ACS Nano. 2015, 9 (12): 11784–11791. PMID 26509714. doi:10.1021/acsnano.5b03720.
^Unocic, Raymond R.; Lupini, Andrew R.; Borisevich, Albina Y.; Cullen, David A.; Kalinin, Sergei V.; Jesse, Stephen. Direct-write liquid phase transformations with a scanning transmission electron microscope. Nanoscale. 2016, 8 (34): 15581–15588. OSTI 1333640. PMID 27510435. doi:10.1039/C6NR04994J.