排序不等式
排序不等式是數學上的一條不等式。它可以推導出很多有名的不等式,例如算術幾何平均不等式(簡稱算幾不等式),柯西不等式,和切比雪夫總和不等式。它是說: 如果 ,和 是兩組實數。而 是的一個排列。排序不等式指出 。 以文字可以說成是順序和不小於亂序和,亂序和不小於逆序和。與很多不等式不同,排序不等式不需限定的正負。 證明排序不等式可以用數學歸納法證明。關鍵在於下列結果: 若 ,則有 移項得出 。 重複以上步骤便可得出排序不等式。
我们设 为 原序列的前 个数的和,即 。 设 为打乱顺序后的序列, 表示乱序后的前 个数的和。所以有 。 注意到 ,则
得证。
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia