数子法数子法是圍棋比賽結束時的一種計分方式,为中国规则[1]、应氏规则[2]、紐西蘭規則[3]及美国规则(AGA Rules)[4]所采用。规定子目皆地,对局雙方需收尽单官,将活子及活子所围之空计为领地,白方加上贴目后,總合較多的一方獲勝。與比目法相比,数子法不需保留死子,但一般需计点数较多。 因需计之点众多,中国式数子法先要“做棋”,将某方领地调整为10的倍数的小方块,再数余子;缺点是会导致棋型被破坏,有碍观瞻。应氏规则规定黑白棋盒中棋子均为180个,局终将双方棋盒中的棋填入各自实空,此时比较棋盒中之余子即可知胜负。 在美国规则中,数子法和比目法通用并行,但结果相同,因為美国规则的比目法有“虚手换俘”的规定,也就是每使用一次弃着,需要向对方提交一枚己方棋子作为俘子,且最後行棋的必須是白方。也就是說,白虛+黑虛不意味着對局結束,白虛+黑虛+白虛才意味着對局結束。因此美国规则的比目法點數計算概念接近於中国规则、应氏规则的數子法。 參見参考资料
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia