数据同化
数据同化,或稱資料同化,是通过数学模型拟合观测数据的一种渐进方式,通常用于复杂系统的建模和動態預測。这类系统通常具有复杂的数学模型,自由度有时达到,且因为观测数据体量庞大,使得对全体观测进行静态拟合成为不可能。 “分析-预报”循环数据同化过程主要为两个步骤的循环。第一步可以称为分析,其中实际系统的观测量与模型产生的预报值相比较/融合,得到系统现在状态的最佳估计。在第二步,根据观测数据和模型两者包含的不确定度性信息,平衡二者得到关于未来系统状态的预报值(具体时间点由下一批观测值给出)。这就完成了一个分析-预报循环。 数据同化与卡尔曼滤波器可以用卡尔曼滤波器来比喻数据同化过程。其中“分析”步骤类似于观测值与它的预估值的作差;预报步骤则相当于系统状态的最优估计。数据同化通常与最优控制过程之不同在于其自由度数量庞大,根本无法得到其协方差矩阵。数据同化常用于涉及大规模时效性数据处理的过程,如现代天气预报。
相關條目 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia