数的韧性
数的韧性是針對正整數的特性,是指此整數需連續進行幾次特定的處理才能到達不動點,數字不再變動。 数的韧性一般可分為加法韧性及乘法韧性,前者是反覆針對數字的各位數字求和(即數字和),後者則是反覆計算各位數字的乘積,當數字為1位數時即為不動點,數字不會再變動。因為結果會依各位數字的有所不同,数的韧性也和進制有關,以下只考慮十進制的情形求和。 當反覆計算數字和時,最後的不動點即為該數字的數字根。因此一數字的加法韧性也可以定義為一數字需計算幾次數字和才能得到其數字根。 舉例2718的加法韧性為2:2718的數字和為 2 + 7 + 1 + 8 = 18,而18的數字和為 1 + 8 = 9。39的乘法韧性為3,因為需要運算三次才能將數字變成一位數:39 → 27 → 14 → 4。39也是乘法韧性為3的最小整數。 特定韧性的數字在十進制中,所有小於10233的整數其乘法韧性都不大於11。乘法韧性依序為0,1,2...的最小整數分別為:
因為計算各位數字的乘積時,只要有一位為0,其乘積即為0,因此整數只要有任一位數為0,在任何進制下,其乘法韧性即為1。 加法韧性依序為0,1,2...的最小整數分別為: 上述數列的下一個數字(即加法韧性為5的整數)為 2 × 102×(1022 − 1)/9 − 1(1後面有2222222222222222222222位的9)。另外,此數列中不等於零的數俱等於下一個數字的數字和。 不論任何進制下,數字的數字和大約和其對數成比例,因此其加法韧性也大致和其重覆對數成比例。 參考資料
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia