最大子数列问题在计算机科学中,最大子数列问题(英語:Maximum subarray problem)的目标是在数列的一维方向找到一个连续的子数列,使该子数列的和最大。例如,对一个数列[−2, 1, −3, 4, −1, 2, 1, −5, 4],其连续子数列中和最大的是[4, −1, 2, 1], 其和为6。 ![]() 该问题最初由布朗大学的烏爾夫·格雷南德教授于1977年提出,当初他为了展示数字图像中一个简单的最大似然估计模型。不久之后卡内基梅隆大学的傑·卡丹提出了该问题的线性算法。(Bentley 1984)。 卡丹算法卡丹算法扫描一次整个数列的所有数值,在每一个扫描点计算以该点数值为结束点的子数列的最大和(正数和)。该子数列由两部分组成:以前一个位置为结束点的最大子数列、该位置的数值。因为该算法用到了“最佳子结构”(以每个位置为终点的最大子数列都是基于其前一位置的最大子数列计算得出),该算法可看成动态规划的一个例子。 算法可用如下Python代码实现: def max_subarray(A):
max_ending_here = max_so_far = A[0]
for x in A[1:]:
max_ending_here = max(x, max_ending_here + x)
max_so_far = max(max_so_far, max_ending_here)
return max_so_far
该问题的一个变种是:如果数列中含有负数元素,允许返回长度为零的子数列。该问题可用如下代码解决: def max_subarray(A):
max_ending_here = max_so_far = 0
for x in A:
max_ending_here = max(0, max_ending_here + x)
max_so_far = max(max_so_far, max_ending_here)
return max_so_far
这种算法稍作修改就可以记录最大子数列的起始位置。卡丹算法时间复杂度为,空间复杂度为。 引用
外部链接 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia