有界算子在泛函分析此一數學分支裡,有界線性算子是指在賦範向量空間X 及Y 之間的一種線性變換L,使得對所有X 內的非零向量v,L(v) 的範數與v 的範數間的比值會侷限在相同的數字內。亦即,存在一些M > 0,使得對所有在X 內的v, 其中最小的M 稱為L 的算子范数。。 有界線性算子一般不會是有界函數;後者需要對所有的v,L(v)的範數是有界的,但這只有在Y 為零向量空間時才有可能。然而,有界線性算符為局部有界函數。 一個線性算子為有界的,若且唯若其為連續的。因此有界线性算子也被称为连续线性算子。 例子
有界和連續的等價如開頭所述,在賦範空間X 及Y間的線性算子L 是有界的,若且唯若其為連續線性算子。證明如下:
參考資料
参见 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia