本迪克森-杜拉克定理在数学裡,本迪克森-杜拉克定理说明了对于一个二维的驻定动力系统 如果存在使得 在研究区域(必须是单连通的)上几乎处处成立,那么这个动力系统不存在周期解。所谓“几乎处处成立”是指不成立的点的集合是一个测度为零的集合。这个定理可以用格林定理证出。 证明运用反证法,假设研究区域为单连通的区域 ,其内存在对于动力系统: 的一组周期解,其周期为,那么对于 所围成的区域,有 但是由于使得 的点 的集合是一个测度为零的集合,所以总可以找到 使得在零点之外不变号。这样不可能为0,矛盾! 因此周期解不存在,定理得证。 参见参考资料
American Mathematical Society, Volume 129, Number 11, Pages 3395-3399,S 0002-9939(01)06107-X, Article electronically published on April 25, 2001[1] |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia